super(NetWork,self).__init__()
时间: 2024-06-15 21:03:31 浏览: 232
super(NetWork, self).__init__()是Python中用于调用父类构造函数的一种方式。它在子类的构造函数中使用,以便在子类中可以继承并初始化父类的属性和方法。
具体来说,super()函数返回一个临时对象,该对象是父类的实例,通过该对象可以调用父类的方法。在调用super()函数时,需要传入两个参数:子类的类名和self对象。这样,super(NetWork, self)就表示调用NetWork类的父类的构造函数。
通过调用super(NetWork, self).__init__(),子类NetWork可以在初始化自己的属性之前,先调用父类的构造函数来完成父类的初始化工作。这样可以确保子类在使用父类的属性和方法时,能够正确地继承和使用。
相关问题
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt # 定义RBF神经网络的类 class RBFNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RBFNetwork, self).__init__() # 初始化输入层,隐含层,输出层的节点数 self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重矩阵和偏置向量 self.W1 = nn.Parameter(torch.randn(input_size, hidden_size)) # 输入层到隐含层的权重矩阵 self.b1 = nn.Parameter(torch.randn(hidden_size)) # 隐含层的偏置向量 self.W2 = nn.Parameter(torch.randn(hidden_size, output_size)) # 隐含层到输出层的权重矩阵 self.b2 = nn.Parameter(torch.randn(output_size)) # 输出层的偏置向量 def forward(self,x): # 前向传播过程 x = torch.from_numpy(x).float() # 将输入向量转换为张量 x = x.view(-1, self.input_size) # 调整输入向量的形状,使其与权重矩阵相匹配 h = torch.exp(-torch.cdist(x, self.W1.t()) + self.b1) # 计算隐含层的输出值,使用高斯径向基函数作为激活函数 y = F.linear(h, self.W2.t(), self.b2) # 计算输出层的输出值,使用线性函数作为激活函数 return y #定义pid控制器 class Pid(): def __init__(self, exp_val, kp, ki, kd): self.KP = kp self.KI = ki self.KD = kd self.exp_val = exp_val self.now_val = 0 self.sum_err = 0 self.now_err = 0 self.last_err = 0 def cmd_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.now_val def err_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.p_err = self.exp_val - self.now_val self.i_err = self.sum_err self.d_err = self.now_err - self.last_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.p_err, self.i_err, self.d_err rbf_net = RBFNetwork(3,10,4) pid_val = [] #对pid进行初始化,目标值是1000 ,p=0.1 ,i=0.15, d=0.1 A_Pid = Pid(1000, 0.1, 0.1, 0.1) # 然后循环100次把数存进数组中去 for i in range(0, 100): input_vector = np.array(A_Pid.err_pid()) output_vector = rbf_net(input_vector) output_vector = output_vector.reshape(4,1) A_Pid = Pid(1000, output_vector[0], output_vector[1], output_vector[2]) pid_val.append(A_Pid.cmd_pid())
这段代码看起来是一个使用 RBF 神经网络实现 PID 控制的例子。其中,RBF 神经网络的参数由 `RBFNetwork` 类来定义,PID 控制器由 `Pid` 类来定义。在主函数中,先对 PID 控制器进行初始化,然后循环 100 次,每次将 PID 控制器的误差作为 RBF 神经网络的输入,得到输出后再输入回 PID 控制器中更新控制量,并将控制量存入 `pid_val` 数组中。最终 `pid_val` 数组中存储的就是经过 RBF 神经网络控制后的输出。
class HGMN(nn.Module): def __init__(self, args, n_user, n_item, n_category): super(HGMN, self).__init__() self.n_user = n_user self.n_item = n_item self.n_category = n_category self.n_hid = args.n_hid self.n_layers = args.n_layers self.mem_size = args.mem_size self.emb = nn.Parameter(torch.empty(n_user + n_item + n_category, self.n_hid)) self.norm = nn.LayerNorm((args.n_layers + 1) * self.n_hid) self.layers = nn.ModuleList() for i in range(0, self.n_layers): self.layers.append(GNNLayer(self.n_hid, self.n_hid, self.mem_size, 5, layer_norm=True, dropout=args.dropout, activation=nn.LeakyReLU(0.2, inplace=True))) self.pool = GraphPooling('mean') self.reset_parameters()
这是一个名为 `HGMN` 的类,继承自 `nn.Module`,用于定义一个高阶图记忆网络(Hierarchical Graph Memory Network)。让我逐行解释一下代码的功能:
1. 在类的初始化方法 `__init__(self, args, n_user, n_item, n_category)` 中,接受一些参数:
- `args`:包含一些超参数的对象。
- `n_user`:用户的数量。
- `n_item`:物品的数量。
- `n_category`:类别的数量。
2. 在初始化方法中,通过调用 `super(HGMN, self).__init__()`,使用父类的初始化方法初始化该类。
3. 将传入的参数赋值给类的成员变量。
4. 使用 `nn.Parameter(torch.empty(n_user + n_item + n_category, self.n_hid))` 创建一个可训练的参数 `emb`,表示嵌入层的权重矩阵。该矩阵的大小为 (n_user + n_item + n_category) x n_hid。
5. 使用 `nn.LayerNorm((args.n_layers + 1) * self.n_hid)` 创建一个层归一化层,用于对输入进行归一化处理。输入的维度为 (args.n_layers + 1) * self.n_hid。
6. 使用 `nn.ModuleList()` 创建一个空的模块列表 `layers`,用于存储多个 GNNLayer 层。
7. 使用循环语句,根据 `self.n_layers` 的值,依次创建 `GNNLayer` 层,并将其添加到 `layers` 列表中。
8. 使用 `GraphPooling('mean')` 创建一个图池化层,用于对图的节点进行池化操作,这里使用均值池化。
9. 调用 `reset_parameters()` 方法,用于初始化模型的参数。
这个类定义了一个层次化图记忆网络模型,其中包含嵌入层、层归一化层、多个 GNNLayer 层以及图池化层。通过传入不同的参数和超参数,可以创建不同配置的 HGMN 模型。
阅读全文