写用SENet 网络使软阈值自适应调节阈值实现去噪收缩效果的卷积自编码器代码
时间: 2023-10-28 15:04:40 浏览: 106
下面是一个使用SENet网络使软阈值自适应调节阈值的卷积自编码器的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv1D, Conv1DTranspose, Input, Lambda, GlobalAveragePooling1D, Dense, Reshape, Multiply, Add
from tensorflow.keras import backend as K
# 定义软阈值函数
def soft_threshold(x, threshold):
return K.sign(x) * K.maximum(K.abs(x) - threshold, 0.0)
# 定义SENet模块
def se_block(x):
squeeze = GlobalAveragePooling1D()(x)
excitation = Dense(K.int_shape(x)[-1] // 16, activation='relu')(squeeze)
excitation = Dense(K.int_shape(x)[-1], activation='sigmoid')(excitation)
excitation = Reshape((1, K.int_shape(x)[-1]))(excitation)
scale = Multiply()([x, excitation])
return scale
# 定义带有SENet的卷积自编码器
def senet_autoencoder(input_shape):
# 编码器
inputs = Input(shape=input_shape)
encoded = Conv1D(32, 3, activation='relu', padding='same')(inputs)
encoded = Conv1D(16, 3, activation='relu', padding='same')(encoded)
# 添加SENet模块
se_encoded = se_block(encoded)
# 添加软阈值层
threshold = Lambda(lambda x: K.mean(x, axis=[1,2], keepdims=True))(se_encoded)
thresholded_encoded = Lambda(lambda x: soft_threshold(x[0], x[1]))([encoded, threshold])
# 解码器
decoded = Conv1DTranspose(16, 3, activation='relu', padding='same')(thresholded_encoded)
decoded = Conv1DTranspose(32, 3, activation='relu', padding='same')(decoded)
decoded = Conv1D(1, 3, activation='sigmoid', padding='same')(decoded)
# 构建自编码器模型
autoencoder = tf.keras.Model(inputs, decoded)
return autoencoder
# 创建卷积自编码器模型
input_shape = (256, 1) # 输入形状
model = senet_autoencoder(input_shape)
model.summary()
```
在上述代码中,我们定义了一个带有SENet网络的卷积自编码器模型。在编码器部分的最后添加了一个SENet模块,该模块通过全局平均池化和全连接层实现了特征通道的自适应缩放。然后,我们使用SENet模块输出的特征通道权重来动态调节软阈值函数的阈值。在解码器部分,我们保持与之前相同的结构。
最后,通过构建自编码器模型,并打印模型摘要,可以查看模型的结构和参数数量。请根据你的需求进行适当的修改和调整。
阅读全文