如何在轻量级OpenPose人体姿态估计网络中添加SENet注意力模块,代码实现
时间: 2023-06-10 11:06:04 浏览: 235
SENet(Squeeze-and-Excitation Network)是一种有效的注意力机制,可以提高深度神经网络的性能。在轻量级OpenPose中添加SENet模块,可以提高其人体姿态估计的精度。
以下是在轻量级OpenPose中添加SENet模块的代码实现。
首先,需要导入必要的库:
```python
import torch
import torch.nn as nn
```
然后,定义SENet模块。
```python
class SELayer(nn.Module):
def __init__(self, in_channels, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // reduction),
nn.ReLU(inplace=True),
nn.Linear(in_channels // reduction, in_channels),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
```
SELayer包含了一个全局平均池化层和两个全连接层,其中第二个全连接层输出的Sigmoid函数用于生成注意力权重。
接下来,将SENet模块添加到轻量级OpenPose网络中。
```python
class PoseEstimationWithSENet(nn.Module):
def __init__(self, num_keypoints=17, num_channels=128):
super(PoseEstimationWithSENet, self).__init__()
self.se_layer1 = SELayer(num_channels)
self.se_layer2 = SELayer(num_channels)
self.se_layer3 = SELayer(num_channels)
self.se_layer4 = SELayer(num_channels)
self.stage1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
self.se_layer1,
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
self.se_layer2,
)
self.stage2 = nn.Sequential(
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
self.se_layer3,
)
self.stage3 = nn.Sequential(
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
self.se_layer4,
)
self.stage4 = nn.Sequential(
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
)
self.stage5 = nn.Sequential(
nn.ConvTranspose2d(num_channels, num_channels, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.Conv2d(num_channels, num_keypoints, kernel_size=1, stride=1),
)
self._initialize_weights()
def forward(self, x):
out1 = self.stage1(x)
out2 = self.stage2(out1)
out3 = self.stage3(out2)
out4 = self.stage4(out3)
out5 = self.stage5(out4)
return out5
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
```
在轻量级OpenPose的每个阶段中,都添加了一个SELayer模块,用于增加注意力权重。
最后,定义一个函数来创建轻量级OpenPose网络和SENet模块。
```python
def create_model_with_senet(num_keypoints, num_channels):
model = PoseEstimationWithSENet(num_keypoints=num_keypoints, num_channels=num_channels)
return model
```
现在,您已经知道如何在轻量级OpenPose人体姿态估计网络中添加SENet注意力模块了。
阅读全文