"GMM_广义矩估计速成手册:Stata 11中的应用示例"
版权申诉
5星 · 超过95%的资源 88 浏览量
更新于2024-03-01
收藏 529KB PDF 举报
GMM (Generalized Method of Moments) is a statistical method used for estimation in econometrics and other fields. It is a flexible and powerful tool that goes beyond the traditional method of moments by allowing for more complex models and more efficient estimation.
In the GMM framework, we aim to estimate the parameters of a model by matching population moments with sample moments. This is done by choosing a set of moment conditions that the data should satisfy, and then finding the parameter values that make these conditions hold.
One common example of GMM is estimating the mean of a distribution. In this case, we use the sample mean as an estimator for the population mean. GMM allows us to generalize this idea to estimate a wider range of parameters and models.
One important feature of GMM is that it can handle endogeneity and other forms of misspecification in the model. This is particularly useful in econometrics, where such issues are common.
In practice, GMM estimation involves choosing appropriate moment conditions, setting up the GMM estimator, and then using numerical optimization techniques to find the parameter values that minimize the discrepancy between the sample moments and the model-implied moments.
Overall, GMM is a versatile and powerful estimation method that can be applied to a wide range of models and datasets. It is a key tool in modern econometrics and statistics, and a valuable addition to any researcher's toolkit. The "GMM_广义矩估计速成手册.pdf" provides a comprehensive guide to understanding and implementing GMM in practice, and is a valuable resource for anyone looking to learn more about this important technique.
2022-09-19 上传
2021-10-05 上传
2021-09-29 上传
2022-09-21 上传
2022-09-14 上传
2022-09-19 上传
samLi0620
- 粉丝: 1383
- 资源: 1万+
最新资源
- Python中快速友好的MessagePack序列化库msgspec
- 大学生社团管理系统设计与实现
- 基于Netbeans和JavaFX的宿舍管理系统开发与实践
- NodeJS打造Discord机器人:kazzcord功能全解析
- 小学教学与管理一体化:校务管理系统v***
- AppDeploy neXtGen:无需代理的Windows AD集成软件自动分发
- 基于SSM和JSP技术的网上商城系统开发
- 探索ANOIRA16的GitHub托管测试网站之路
- 语音性别识别:机器学习模型的精确度提升策略
- 利用MATLAB代码让古董486电脑焕发新生
- Erlang VM上的分布式生命游戏实现与Elixir设计
- 一键下载管理 - Go to Downloads-crx插件
- Java SSM框架开发的客户关系管理系统
- 使用SQL数据库和Django开发应用程序指南
- Spring Security实战指南:详细示例与应用
- Quarkus项目测试展示柜:Cucumber与FitNesse实践