非扭边界条件下的三次样条曲线插值C++代码,要求使用eigen库
时间: 2024-03-05 07:49:58 浏览: 112
三次样条插值算法C++实现
4星 · 用户满意度95%
以下是使用Eigen库实现的非扭边界条件下的三次样条曲线插值的C++代码:
```cpp
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
VectorXd getCoefficients(VectorXd x, VectorXd y)
{
int n = x.size() - 1;
VectorXd h = x.tail(n) - x.head(n);
VectorXd b = (y.tail(n) - y.head(n)).cwiseQuotient(h);
VectorXd u(n);
u(1) = 2 * (h(0) + h(1));
for (int i = 2; i < n; i++)
u(i) = 2 * (h(i - 1) + h(i)) - h(i - 1) * h(i - 1) / u(i - 1);
VectorXd v(n);
v(1) = 6 * (b(1) - b(0));
for (int i = 2; i < n; i++)
v(i) = 6 * (b(i) - b(i - 1)) - h(i - 1) * v(i - 1) / u(i - 1);
VectorXd z(n + 1);
z(n) = 0;
for (int i = n - 1; i > 0; i--)
z(i) = (v(i) - h(i) * z(i + 1)) / u(i);
z(0) = 0;
MatrixXd A(n, n);
A.setZero();
for (int i = 0; i < n - 1; i++)
{
A(i, i) = (h(i) + h(i + 1)) / 3;
A(i, i + 1) = h(i + 1) / 6;
A(i + 1, i) = h(i + 1) / 6;
A(i + 1, i + 1) = (h(i + 1) + h(i + 2)) / 3;
}
VectorXd b_prime(n);
for (int i = 0; i < n; i++)
b_prime(i) = (y(i + 1) - y(i)) / h(i) - (h(i) * (2 * z(i) + z(i + 1))) / 6;
VectorXd c = A.colPivHouseholderQr().solve(b_prime);
VectorXd d(n);
for (int i = 0; i < n; i++)
d(i) = (z(i + 1) - z(i)) / (6 * h(i));
VectorXd coefficients(4 * n);
for (int i = 0; i < n; i++)
{
coefficients.segment(4 * i, 4) << y(i), b(i), c(i), d(i);
}
return coefficients;
}
double evaluateSpline(VectorXd coefficients, double x, VectorXd knotVector)
{
int n = knotVector.size() - 1;
int i = n - 1;
while (i >= 0 && x < knotVector(i))
{
i--;
}
i = min(max(i, 0), n - 1);
double h = knotVector(i + 1) - knotVector(i);
double xi = x - knotVector(i);
double a = coefficients(4 * i);
double b = coefficients(4 * i + 1);
double c = coefficients(4 * i + 2);
double d = coefficients(4 * i + 3);
return a + b * xi + c * xi * xi + d * xi * xi * xi;
}
int main()
{
VectorXd x(6);
x << 0, 1, 2, 3, 4, 5;
VectorXd y(6);
y << 0, 1, 0, -1, 0, 1;
VectorXd coefficients = getCoefficients(x, y);
VectorXd knotVector(7);
knotVector << -1, x, 6;
double x_new = 2.5;
double y_new = evaluateSpline(coefficients, x_new, knotVector);
cout << "f(" << x_new << ") = " << y_new << endl;
return 0;
}
```
该代码使用了Eigen库中的矩阵操作和线性求解器,实现了非扭边界条件下的三次样条曲线插值。其中,getCoefficients函数用于求解三次样条曲线的系数,evaluateSpline函数用于根据系数和插值节点插值新的数据点。在main函数中,我们先定义了一组数据点x和y,然后使用getCoefficients函数求解系数,再使用evaluateSpline函数插值新的数据点。
阅读全文