#include <torch/extension.h> torch::Tensor my_add_forward(const torch::Tensor& input1, const torch::Tensor& input2) { return input1 + input2; } std::vector<torch::Tensor> my_add_backward(const torch::Tensor& grad_output) { return {grad_output, grad_output}; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward", &my_add_forward, "MyAdd forward"); m.def("backward", &my_add_backward, "MyAdd backward"); }
时间: 2024-04-04 20:31:03 浏览: 21
这段代码是使用 PyTorch C++ 扩展实现的一个简单的张量加法操作。其中,my_add_forward 函数接受两个张量参数 input1 和 input2,返回它们的和。my_add_backward 函数接受一个张量参数 grad_output,返回一个包含两个张量的 vector,这两个张量都是 grad_output。最后,在 PYBIND11_MODULE 宏中,我们将这两个函数绑定到 Python 模块中,使得我们可以在 Python 中调用它们。
相关问题
torch::Tensor 转为 caffe2::Tensor
可以使用以下代码将 torch::Tensor 转换为 caffe2::Tensor:
```c++
#include <caffe2/core/tensor.h>
#include <torch/script.h>
caffe2::Tensor convert_torch_to_caffe2(const torch::Tensor& input_tensor) {
// 获取张量的形状和数据类型
auto shape = input_tensor.sizes();
caffe2::TypeMeta data_type;
if (input_tensor.dtype() == torch::kFloat) {
data_type = caffe2::TypeMeta::Make<float>();
} else if (input_tensor.dtype() == torch::kInt) {
data_type = caffe2::TypeMeta::Make<int>();
} else {
throw std::runtime_error("Unsupported data type");
}
// 创建 caffe2::Tensor
caffe2::Tensor output_tensor(data_type, caffe2::DeviceType::CPU);
output_tensor.Resize(shape);
// 将数据从 torch::Tensor 复制到 caffe2::Tensor
if (input_tensor.is_contiguous()) {
std::memcpy(output_tensor.mutable_data(), input_tensor.data_ptr(), input_tensor.nbytes());
} else {
auto input_tensor_contiguous = input_tensor.contiguous();
std::memcpy(output_tensor.mutable_data(), input_tensor_contiguous.data_ptr(), input_tensor_contiguous.nbytes());
}
return output_tensor;
}
```
这个函数将 `torch::Tensor` 转换为 `caffe2::Tensor` 并返回。注意,这个函数只支持 `float` 和 `int` 数据类型。如果需要支持其他数据类型,需要相应地修改代码。
int main() { torch::jit::script::Module module = torch::jit::load("path/to/your/model.pt"); return 0; }
这段代码使用了 C++ 的 LibTorch 库来加载 PyTorch 模型。`torch::jit::load()` 函数可以从文件中读取模型,并返回一个 `torch::jit::script::Module` 对象,表示加载的模型。
在使用这个模型之前,你需要根据模型的输入和输出定义一个适当的推理函数。推理函数应该接受模型的输入,将其传递给模型,并返回模型的输出。以下是一个简单的示例:
```c++
#include <torch/script.h> // 包含 LibTorch 头文件
int main() {
// 加载模型
torch::jit::script::Module module = torch::jit::load("path/to/your/model.pt");
// 定义推理函数
auto inference_func = [&](const torch::Tensor& input) -> torch::Tensor {
// 将输入传递给模型
std::vector<torch::jit::IValue> inputs;
inputs.push_back(input);
torch::Tensor output = module.forward(inputs).toTensor();
// 返回模型的输出
return output;
};
// 使用推理函数进行推理
torch::Tensor input = torch::randn({1, 3, 224, 224}); // 示例输入
torch::Tensor output = inference_func(input); // 使用推理函数进行推理
return 0;
}
```
在这个示例中,我们首先加载了一个 PyTorch 模型,并定义了一个接受 Tensor 输入并返回 Tensor 输出的推理函数。在推理时,我们将示例输入传递给推理函数,并获得模型的输出。
阅读全文