K = np.array 这是什么意思
时间: 2024-05-10 10:18:37 浏览: 136
这是在Python中使用NumPy库创建一个多维数组的语法。np.array()函数将Python列表或元组转换为NumPy数组。例如,以下代码将创建一个一维数组:
```
import numpy as np
a = np.array([1, 2, 3, 4])
print(a)
```
输出结果为:
```
[1 2 3 4]
```
同样,可以通过传递一个嵌套列表来创建一个二维数组:
```
b = np.array([[1, 2], [3, 4]])
print(b)
```
输出结果为:
```
[[1 2]
[3 4]]
```
相关问题
import sympy from sympy import diff from sympy import hessian import numpy as np import pandas as pd def f(x1,x2): return 2*x1**2+x2**2 def f1(x1,x2): x=diff(f(x1,x2),x1) return x def f2(x1,x2): y=diff(f(x1,x2),x2) return y def niudun(x1,x2,e): x3=np.array([x1,x2]) x1,x2=sympy.symbols('x1 x2') k=1 grad=np.array([f1(x1,x2),f2(x1,x2)]) heisai=hessian(f(x1,x2),(x1,x2)) heisai=np.array(heisai,dtype='float') niheisai=np.linalg.inv(heisai) d=-1*np.dot(niheisai,grad) fan=np.linalg.norm(np.array(d.astype(float)),ord=2) while abs(fan)>e: x4=np.array(x3)+np.array(d) k+=1 x3=x4 x1=x3[0] x2=x3[1] grad=np.array([f1(x1,x2),f2(x1,x2)]) heisai=hessian(f(x1,x2),(x1,x2)) heisai=np.array(heisai,dtype='float') niheisai=np.linalg.inv(heisai) d=-1*np.dot(np.array(niheisai),grad) d=pd.DataFrame(d,dtype=np.float16) fan=np.linalg.norm(np.array(d.astype(float)),ord=2) return ("运行次数为:"+k+','+"极值点为:"+x4) x1,x2 = map(float,input("请输入初点:").split(' ')) e= eval(input("请输入精度:")) print(niudun(x1,x2,e))
这段代码实现了牛顿法求解二元函数的最优解,其中 `f` 是目标函数,`f1` 和 `f2` 分别是目标函数关于 $x_1$ 和 $x_2$ 的偏导数,`niudun` 函数使用牛顿法求解最优解。
具体来说,`niudun` 函数的输入参数包括初值点 `(x1, x2)` 和精度 `e`,输出结果包括运行次数和极值点。函数中定义了符号变量 `x1` 和 `x2`,计算梯度向量和 Hessian 矩阵时使用这两个符号变量,而不是具体的数值,这样可以方便地求出梯度向量和 Hessian 矩阵。函数中使用了 `sympy` 库中的 `diff` 函数和 `hessian` 函数来计算目标函数的偏导数和 Hessian 矩阵。
在函数中使用了循环来迭代求解最优解。每次迭代的步骤包括计算梯度向量和 Hessian 矩阵,求解 Hessian 矩阵的逆矩阵,计算下降方向,计算下降方向的模长,更新当前点的位置。循环的终止条件是下降方向的模长小于精度 `e`。
这段代码中有一处错误,即在返回结果时,将运行次数 `k` 直接转换为字符串类型会报错,需要使用 `str(k)` 将其转换为字符串类型。同时,还需要在 `print` 函数中加上括号。另外,最后的返回结果中应该是字符串类型,因此需要将数字和字符串拼接起来。修改后的代码如下:
```python
import sympy
from sympy import diff, hessian
import numpy as np
import pandas as pd
def f(x1, x2):
return 2 * x1**2 + x2**2
def f1(x1, x2):
x = diff(f(x1, x2), x1)
return x
def f2(x1, x2):
y = diff(f(x1, x2), x2)
return y
def niudun(x1, x2, e):
x3 = np.array([x1, x2])
x1, x2 = sympy.symbols('x1 x2')
k = 1
grad = np.array([f1(x1, x2), f2(x1, x2)])
heisai = hessian(f(x1, x2), (x1, x2))
heisai = np.array(heisai, dtype='float')
niheisai = np.linalg.inv(heisai)
d = -1 * np.dot(niheisai, grad)
fan = np.linalg.norm(np.array(d.astype(float)), ord=2)
while abs(fan) > e:
x4 = np.array(x3) + np.array(d)
k += 1
x3 = x4
x1 = x3[0]
x2 = x3[1]
grad = np.array([f1(x1, x2), f2(x1, x2)])
heisai = hessian(f(x1, x2), (x1, x2))
heisai = np.array(heisai, dtype='float')
niheisai = np.linalg.inv(heisai)
d = -1 * np.dot(np.array(niheisai), grad)
d = pd.DataFrame(d, dtype=np.float16)
fan = np.linalg.norm(np.array(d.astype(float)), ord=2)
return "运行次数为:" + str(k) + ',' + "极值点为:" + str(x4)
x1, x2 = map(float, input("请输入初点:").split(' '))
e = eval(input("请输入精度:"))
print(niudun(x1, x2, e))
```
K = np.array([[97981909.8521,0,914.5],[0,97956658.9519,64.5],[0,0,1]]) D = np.array([0,0,-0,-0,0]) #外参矩阵R和T R是旋转矩阵 R = np.array([[1,-0,0],[-0,1,0],[-0,-0,1]]) T = np.array([-4.3939,-2.891,589187.672]) # 投影矩阵 P P = K.dot(np.hstack((R, T.reshape(-1, 1)))) np.set_printoptions(precision=4, suppress=True) print(P)
根据你提供的代码,这段代码实现了相机的投影矩阵 P 的计算。其中,K 是相机内参矩阵,D 是相机的畸变参数,R 和 T 是相机的旋转矩阵和平移矩阵,通过将它们合并起来,可以得到相机的外参矩阵 [R|T]。将内参矩阵和外参矩阵相乘,即可得到相机的投影矩阵 P。最后,通过设置输出格式,将 P 输出到控制台。
需要注意的是,这段代码中的参数值都是随意设定的,实际应用中需要根据具体的相机和场景进行调整。
阅读全文