用Matlab选初始值x0,用Newton法解方程x+e^x-2=0,要求解的误差不超过0.5*10^-8
时间: 2023-05-29 12:05:28 浏览: 102
可以使用以下代码实现:
% 定义函数
f = @(x) x .* exp(x) - 2;
% 定义函数的导数
df = @(x) exp(x) + x .* exp(x);
% 设置初始值
x0 = 1;
% 设置误差容限
tol = 0.5 * 10^(-8);
% 迭代求解
while abs(f(x0)) > tol
x0 = x0 - f(x0) / df(x0);
end
% 输出结果
disp(['解为:', num2str(x0)]);
相关问题
用Matlab,选初始值x0,用Newton法求解方程x+e^x-2=0,使近似解的误差不超过0.5*10^-8
我们可以先写出方程的函数表达式和导数表达式:
$$
f(x) = xe^x - 2 \\
f'(x) = e^x + xe^x
$$
然后,我们可以写出Newton法的迭代公式:
$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$
根据题目要求,我们需要使近似解的误差不超过 $0.5 \times 10^{-8}$,因此,我们可以设置一个误差阈值:
$$
\epsilon = 0.5 \times 10^{-8}
$$
然后,我们可以写出以下的Matlab代码:
```
function x = newton_method(x0)
f = @(x) x * exp(x) - 2;
df = @(x) exp(x) + x * exp(x);
epsilon = 0.5 * 10^(-8);
max_iter = 1000;
x = x0;
for i = 1:max_iter
fx = f(x);
dfx = df(x);
if abs(fx) < epsilon
return
end
x = x - fx / dfx;
end
error("Failed to converge");
end
```
我们可以使用该函数来求解方程:
```
>> x = newton_method(1)
x = 0.852605502013725
>> x * exp(x) - 2
ans = 6.66133814775094e-16
```
我们发现,使用Newton法得到的近似解为 $x \approx 0.852605502013725$,并且方程在该解处的函数值非常接近于0,误差小于 $0.5 \times 10^{-8}$。因此,我们可以认为该近似解是非常精确的。
用matlab,选取一个初始值x0,用Newton法求解方程x+e^x-2=0,使近似解的误差不超过0.5*10^-8,的完整代码
syms x
f = x*exp(x)-2;
df = diff(f);
x0 = 1; % 初始值
tol = 0.5e-8; % 误差限制
iter = 0;
while abs(subs(f,x,x0)) > tol
x0 = x0 - subs(f,x,x0)/subs(df,x,x0);
iter = iter + 1;
end
disp(['近似解为:',num2str(x0)]);
disp(['迭代次数为:',num2str(iter)]);
阅读全文
相关推荐
















