本项目有一部分时间戳数据,请编写Mapreduce程序将这些时间戳按升序进行排序,同时转换成对应的date时间
时间: 2024-03-14 14:47:27 浏览: 155
huy-huyn,时间戳转换成日期c语言源码,c语言程序
好的,这是一个非常常见的MapReduce任务,我们可以利用MapReduce中的排序功能来完成这个任务。下面是一个示例程序,假设时间戳数据文件的每一行都是一个时间戳,格式为Unix时间戳:
```java
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
import org.apache.hadoop.util.GenericOptionsParser;
public class TimestampSort {
public static class TimestampMapper extends Mapper<LongWritable, Text, LongWritable, LongWritable> {
private LongWritable timestamp = new LongWritable();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
long ts = Long.parseLong(value.toString().trim());
timestamp.set(ts);
context.write(timestamp, new LongWritable(1));
}
}
public static class TimestampReducer extends Reducer<LongWritable, LongWritable, Text, Text> {
public void reduce(LongWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long ts = key.get();
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date = sdf.format(new Date(ts * 1000));
context.write(new Text(date), new Text(""));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: timestamps <input> <output>");
System.exit(2);
}
Job job = Job.getInstance(conf, "Timestamp Sort");
job.setJarByClass(TimestampSort.class);
job.setMapperClass(TimestampMapper.class);
job.setReducerClass(TimestampReducer.class);
job.setPartitionerClass(HashPartitioner.class);
job.setNumReduceTasks(1);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
TextInputFormat.addInputPath(job, new Path(otherArgs[0]));
TextOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
这个程序的主要思路是将时间戳作为Map的输出key,然后利用MapReduce框架自带的排序功能,将时间戳按升序排序。在Reducer中,将时间戳转换成对应的日期时间格式,输出到文件中即可。由于所有的时间戳都被映射到了同一个Reducer中,所以Reducer也只需要一个,这样可以减少通信开销,提高程序性能。
阅读全文