OBB袋外错误率 如何用R语言实现它
时间: 2023-07-20 20:41:20 浏览: 128
在R语言中,可以通过使用随机森林算法的包(例如randomForest包)来计算OBB袋外错误率。具体实现步骤如下:
1. 加载randomForest包:
```
library(randomForest)
```
2. 读取数据集:
```
data <- read.csv("data.csv")
```
3. 将数据集分为训练集和测试集:
```
train <- data[1:500,]
test <- data[501:1000,]
```
4. 训练随机森林模型并计算OBB袋外错误率:
```
model <- randomForest(y ~ ., data=train)
oob_error <- 1 - model$err.rate[nrow(model$err.rate), 1]
```
其中,y为目标变量,"."表示使用除目标变量外的所有变量作为自变量。model$err.rate[nrow(model$err.rate), 1]表示使用袋外数据集进行测试所得到的分类误差率的平均值。
通过以上代码,可以得到OBB袋外错误率的值,用于评估随机森林模型的性能。
相关问题
c++实现obb包围盒
OBB(Oriented Bounding Box)包围盒是一个可以包含物体的最小矩形,与物体的方向一致。以下是一个简单的C++实现:
首先,我们需要定义一个表示OBB的结构体:
```
struct OBB
{
Vector3 center; // 中心点
Vector3 axis[3]; // 三个轴
Vector3 extent; // 三个轴上的半径
};
```
其中,`Vector3`是一个表示三维向量的类,具体实现可以参考以下代码:
```
class Vector3
{
public:
float x, y, z;
Vector3() : x(0), y(0), z(0) {}
Vector3(float x, float y, float z) : x(x), y(y), z(z) {}
Vector3 operator+(const Vector3& v) const
{
return Vector3(x + v.x, y + v.y, z + v.z);
}
Vector3 operator-(const Vector3& v) const
{
return Vector3(x - v.x, y - v.y, z - v.z);
}
Vector3 operator*(float s) const
{
return Vector3(x * s, y * s, z * s);
}
Vector3 operator/(float s) const
{
return Vector3(x / s, y / s, z / s);
}
float Length() const
{
return sqrt(x * x + y * y + z * z);
}
void Normalize()
{
float length = Length();
x /= length;
y /= length;
z /= length;
}
static Vector3 Cross(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x);
}
static float Dot(const Vector3& v1, const Vector3& v2)
{
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
};
```
接下来,我们需要实现一个函数来计算OBB包围盒。假设我们已有一个表示物体的三角面片的数组,每个面片由三个顶点构成,可以用以下代码来实现:
```
OBB CalculateOBB(const std::vector<Vector3>& vertices)
{
OBB obb;
// 计算中心点
obb.center = Vector3(0, 0, 0);
for (int i = 0; i < vertices.size(); i++)
{
obb.center = obb.center + vertices[i];
}
obb.center = obb.center / vertices.size();
// 计算协方差矩阵
Matrix3 cov;
for (int i = 0; i < vertices.size(); i++)
{
Vector3 v = vertices[i] - obb.center;
cov.m[0][0] += v.x * v.x;
cov.m[0][1] += v.x * v.y;
cov.m[0][2] += v.x * v.z;
cov.m[1][0] += v.y * v.x;
cov.m[1][1] += v.y * v.y;
cov.m[1][2] += v.y * v.z;
cov.m[2][0] += v.z * v.x;
cov.m[2][1] += v.z * v.y;
cov.m[2][2] += v.z * v.z;
}
// 计算特征值和特征向量
float eigenvalues[3];
Vector3 eigenvectors[3];
cov.Diagonalize(eigenvalues, eigenvectors);
// 将特征向量作为OBB的轴
obb.axis[0] = eigenvectors[0];
obb.axis[1] = eigenvectors[1];
obb.axis[2] = eigenvectors[2];
// 计算OBB的半径
obb.extent.x = sqrt(eigenvalues[0]);
obb.extent.y = sqrt(eigenvalues[1]);
obb.extent.z = sqrt(eigenvalues[2]);
return obb;
}
```
其中,`Matrix3`是一个表示3x3矩阵的类,`Diagonalize`函数用于计算矩阵的特征值和特征向量,具体实现可以参考以下代码:
```
class Matrix3
{
public:
float m[3][3];
Matrix3()
{
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
m[i][j] = 0;
}
}
}
void Diagonalize(float eigenvalues[3], Vector3 eigenvectors[3])
{
// Jacobi旋转法
Matrix3 a = *this;
Matrix3 d;
d.m[0][0] = 1;
d.m[1][1] = 1;
d.m[2][2] = 1;
int n = 0;
while (n < 50)
{
int p, q;
float max_offdiag = 0;
for (int i = 0; i < 2; i++)
{
for (int j = i + 1; j < 3; j++)
{
float offdiag = fabs(a.m[i][j]);
if (offdiag > max_offdiag)
{
max_offdiag = offdiag;
p = i;
q = j;
}
}
}
if (max_offdiag < 1e-6)
{
break;
}
float theta = (a.m[q][q] - a.m[p][p]) / (2 * a.m[p][q]);
float t = 1 / (fabs(theta) + sqrt(1 + theta * theta));
if (theta < 0)
{
t = -t;
}
float c = 1 / sqrt(1 + t * t);
float s = t * c;
Matrix3 r;
r.m[p][p] = c;
r.m[p][q] = -s;
r.m[q][p] = s;
r.m[q][q] = c;
a = r.Transpose() * a * r;
d = d * r;
n++;
}
// 将对角线元素作为特征值,列向量作为特征向量
eigenvalues[0] = a.m[0][0];
eigenvalues[1] = a.m[1][1];
eigenvalues[2] = a.m[2][2];
eigenvectors[0] = Vector3(a.m[0][0], a.m[1][0], a.m[2][0]);
eigenvectors[1] = Vector3(a.m[0][1], a.m[1][1], a.m[2][1]);
eigenvectors[2] = Vector3(a.m[0][2], a.m[1][2], a.m[2][2]);
}
Matrix3 Transpose() const
{
Matrix3 result;
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
result.m[j][i] = m[i][j];
}
}
return result;
}
};
```
最后,我们可以使用上述代码来计算OBB包围盒,例如:
```
// 定义一个三角面片的数组
std::vector<Vector3> vertices;
vertices.push_back(Vector3(-1, 0, 0));
vertices.push_back(Vector3(0, 1, 0));
vertices.push_back(Vector3(0, 0, 1));
// 计算OBB包围盒
OBB obb = CalculateOBB(vertices);
```
在计算出OBB包围盒后,我们可以根据需要进行旋转、平移和缩放,从而使其与物体完全契合。
在NX二次开发中,如何实现OBB算法获得实体的最小包容盒,通过C++语言实现
OBB算法可以用于获取三维实体的最小包容盒,下面是在NX二次开发中实现OBB算法的C++代码:
```cpp
#include <uf_defs.h>
#include <uf_obj.h>
#include <uf_modl.h>
#include <uf_mtx.h>
#include <math.h>
#define MAX_POINT_NUM 1000
// 定义一个结构体用来保存三维点
typedef struct
{
double x;
double y;
double z;
} Point3D;
// 定义一个结构体用来保存OBB盒子信息
typedef struct
{
Point3D center; // OBB中心点坐标
double axis[3][3]; // OBB三个轴的方向向量
double extent[3]; // OBB在三个方向上的半径
} OBB;
// 获取实体的所有顶点
int GetVertices(const tag_t &objTag, Point3D *vertices, int &vertexNum)
{
UF_MODL_ask_body_verts(objTag, &vertexNum, (double **)&vertices);
return (vertexNum > 0) ? 0 : -1;
}
// 计算点集的中心
Point3D ComputeCenter(const Point3D *vertices, const int &vertexNum)
{
Point3D center = { 0.0, 0.0, 0.0 };
for (int i = 0; i < vertexNum; i++)
{
center.x += vertices[i].x;
center.y += vertices[i].y;
center.z += vertices[i].z;
}
center.x /= vertexNum;
center.y /= vertexNum;
center.z /= vertexNum;
return center;
}
// 计算点集的协方差矩阵
void ComputeCovarianceMatrix(const Point3D *vertices, const int &vertexNum, double *cov)
{
Point3D center = ComputeCenter(vertices, vertexNum);
double xx = 0.0, xy = 0.0, xz = 0.0;
double yy = 0.0, yz = 0.0, zz = 0.0;
for (int i = 0; i < vertexNum; i++)
{
double dx = vertices[i].x - center.x;
double dy = vertices[i].y - center.y;
double dz = vertices[i].z - center.z;
xx += dx * dx;
xy += dx * dy;
xz += dx * dz;
yy += dy * dy;
yz += dy * dz;
zz += dz * dz;
}
cov[0] = xx / vertexNum;
cov[1] = xy / vertexNum;
cov[2] = xz / vertexNum;
cov[3] = xy / vertexNum;
cov[4] = yy / vertexNum;
cov[5] = yz / vertexNum;
cov[6] = xz / vertexNum;
cov[7] = yz / vertexNum;
cov[8] = zz / vertexNum;
}
// 计算协方差矩阵的特征值和特征向量
void ComputeEigen(const double *cov, double *eigenValue, double *eigenVector)
{
double A[9], V[9], d[3];
memcpy(A, cov, sizeof(double) * 9);
UF_MTX_dsyev(3, A, eigenValue, V);
d[0] = eigenValue[0];
d[1] = eigenValue[1];
d[2] = eigenValue[2];
// 对特征值进行排序
if (d[0] < d[1]) { std::swap(d[0], d[1]); UF_MTX_swap_cols(3, V, 0, 1); }
if (d[1] < d[2]) { std::swap(d[1], d[2]); UF_MTX_swap_cols(3, V, 1, 2); }
if (d[0] < d[1]) { std::swap(d[0], d[1]); UF_MTX_swap_cols(3, V, 0, 1); }
memcpy(eigenVector, V, sizeof(double) * 9);
}
// 计算OBB盒子信息
void ComputeOBB(const Point3D *vertices, const int &vertexNum, OBB &obb)
{
double cov[9], eigenValue[3], eigenVector[9];
ComputeCovarianceMatrix(vertices, vertexNum, cov);
ComputeEigen(cov, eigenValue, eigenVector);
obb.center = ComputeCenter(vertices, vertexNum);
memcpy(obb.axis[0], &eigenVector[0], sizeof(double) * 3);
memcpy(obb.axis[1], &eigenVector[3], sizeof(double) * 3);
memcpy(obb.axis[2], &eigenVector[6], sizeof(double) * 3);
obb.extent[0] = sqrt(eigenValue[0]);
obb.extent[1] = sqrt(eigenValue[1]);
obb.extent[2] = sqrt(eigenValue[2]);
}
int main(int argc, char *argv[])
{
int vertexNum = 0;
Point3D vertices[MAX_POINT_NUM];
OBB obb;
tag_t objTag = UF_OBJ_NULL;
UF_UI_select_with_single_dialog("Select a body", "Select", &objTag);
if (GetVertices(objTag, vertices, vertexNum) == 0)
{
ComputeOBB(vertices, vertexNum, obb);
printf("OBB Center: (%.3f, %.3f, %.3f)\n", obb.center.x, obb.center.y, obb.center.z);
printf("OBB Axis 1: (%.3f, %.3f, %.3f)\n", obb.axis[0][0], obb.axis[0][1], obb.axis[0][2]);
printf("OBB Axis 2: (%.3f, %.3f, %.3f)\n", obb.axis[1][0], obb.axis[1][1], obb.axis[1][2]);
printf("OBB Axis 3: (%.3f, %.3f, %.3f)\n", obb.axis[2][0], obb.axis[2][1], obb.axis[2][2]);
printf("OBB Extent 1: %.3f\n", obb.extent[0]);
printf("OBB Extent 2: %.3f\n", obb.extent[1]);
printf("OBB Extent 3: %.3f\n", obb.extent[2]);
}
return 0;
}
```
在上面的代码中,我们首先通过 `UF_UI_select_with_single_dialog` 函数获取用户选择的实体,然后再通过 `GetVertices` 函数获取该实体的所有顶点。接着,我们实现了 `ComputeCenter` 函数来计算点集的中心, `ComputeCovarianceMatrix` 函数来计算点集的协方差矩阵, `ComputeEigen` 函数来计算协方差矩阵的特征值和特征向量。最后,我们实现了 `ComputeOBB` 函数来计算实体的OBB盒子信息,并输出结果。
在使用上述代码时,需要注意使用的NX版本是否支持 `UF_MTX_dsyev` 函数和 `UF_MTX_swap_cols` 函数。如果不支持,可以自行实现这两个函数。
阅读全文
相关推荐















