OBB袋外错误率 如何用R语言实现它
时间: 2023-07-20 20:41:20 浏览: 104
在R语言中,可以通过使用随机森林算法的包(例如randomForest包)来计算OBB袋外错误率。具体实现步骤如下:
1. 加载randomForest包:
```
library(randomForest)
```
2. 读取数据集:
```
data <- read.csv("data.csv")
```
3. 将数据集分为训练集和测试集:
```
train <- data[1:500,]
test <- data[501:1000,]
```
4. 训练随机森林模型并计算OBB袋外错误率:
```
model <- randomForest(y ~ ., data=train)
oob_error <- 1 - model$err.rate[nrow(model$err.rate), 1]
```
其中,y为目标变量,"."表示使用除目标变量外的所有变量作为自变量。model$err.rate[nrow(model$err.rate), 1]表示使用袋外数据集进行测试所得到的分类误差率的平均值。
通过以上代码,可以得到OBB袋外错误率的值,用于评估随机森林模型的性能。
相关问题
UG8.5 NX二次开发 OBB算法获取实体的最小包容盒,C++语言实现
下面是C++语言实现的OBB算法获取实体的最小包容盒的示例代码:
```c++
#include <iostream>
#include <vector>
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
using namespace std;
using namespace Eigen;
Matrix3f computeCovariance(const vector<Vector3f>& points)
{
Vector3f mean = Vector3f::Zero();
for (int i = 0; i < points.size(); ++i) {
mean += points[i];
}
mean /= points.size();
Matrix3f cov = Matrix3f::Zero();
for (int i = 0; i < points.size(); ++i) {
Vector3f p = points[i] - mean;
cov += p * p.transpose();
}
cov /= points.size();
return cov;
}
void computeOBB(const vector<Vector3f>& points, Matrix3f& orientation, Vector3f& center, Vector3f& halfExtents)
{
// Compute covariance matrix
Matrix3f cov = computeCovariance(points);
// Compute eigenvectors and eigenvalues of covariance matrix
SelfAdjointEigenSolver<Matrix3f> eigensolver(cov);
Matrix3f eigenVectors = eigensolver.eigenvectors();
Vector3f eigenValues = eigensolver.eigenvalues();
// Determine orientation of OBB
orientation = eigenVectors;
// Determine center of OBB
center = Vector3f::Zero();
for (int i = 0; i < points.size(); ++i) {
center += points[i];
}
center /= points.size();
center = orientation.transpose() * center;
// Determine half-extents of OBB
halfExtents = Vector3f::Zero();
for (int i = 0; i < points.size(); ++i) {
Vector3f p = orientation.transpose() * (points[i] - center);
halfExtents[0] = max(halfExtents[0], abs(p[0]));
halfExtents[1] = max(halfExtents[1], abs(p[1]));
halfExtents[2] = max(halfExtents[2], abs(p[2]));
}
}
int main()
{
vector<Vector3f> points = { Vector3f(1, 2, 3), Vector3f(4, 5, 6), Vector3f(7, 8, 9) };
Matrix3f orientation;
Vector3f center;
Vector3f halfExtents;
computeOBB(points, orientation, center, halfExtents);
cout << "Orientation:" << endl << orientation << endl;
cout << "Center: " << center.transpose() << endl;
cout << "Half-Extents: " << halfExtents.transpose() << endl;
return 0;
}
```
其中,`computeCovariance`函数用于计算点云的协方差矩阵,`computeOBB`函数用于计算OBB的方向、中心和半轴长度。函数中使用了Eigen库来进行矩阵和向量计算。
在NX二次开发中,如何实现OBB算法获得实体的最小包容盒,通过C++语言实现
OBB算法可以用于获取三维实体的最小包容盒,下面是在NX二次开发中实现OBB算法的C++代码:
```cpp
#include <uf_defs.h>
#include <uf_obj.h>
#include <uf_modl.h>
#include <uf_mtx.h>
#include <math.h>
#define MAX_POINT_NUM 1000
// 定义一个结构体用来保存三维点
typedef struct
{
double x;
double y;
double z;
} Point3D;
// 定义一个结构体用来保存OBB盒子信息
typedef struct
{
Point3D center; // OBB中心点坐标
double axis[3][3]; // OBB三个轴的方向向量
double extent[3]; // OBB在三个方向上的半径
} OBB;
// 获取实体的所有顶点
int GetVertices(const tag_t &objTag, Point3D *vertices, int &vertexNum)
{
UF_MODL_ask_body_verts(objTag, &vertexNum, (double **)&vertices);
return (vertexNum > 0) ? 0 : -1;
}
// 计算点集的中心
Point3D ComputeCenter(const Point3D *vertices, const int &vertexNum)
{
Point3D center = { 0.0, 0.0, 0.0 };
for (int i = 0; i < vertexNum; i++)
{
center.x += vertices[i].x;
center.y += vertices[i].y;
center.z += vertices[i].z;
}
center.x /= vertexNum;
center.y /= vertexNum;
center.z /= vertexNum;
return center;
}
// 计算点集的协方差矩阵
void ComputeCovarianceMatrix(const Point3D *vertices, const int &vertexNum, double *cov)
{
Point3D center = ComputeCenter(vertices, vertexNum);
double xx = 0.0, xy = 0.0, xz = 0.0;
double yy = 0.0, yz = 0.0, zz = 0.0;
for (int i = 0; i < vertexNum; i++)
{
double dx = vertices[i].x - center.x;
double dy = vertices[i].y - center.y;
double dz = vertices[i].z - center.z;
xx += dx * dx;
xy += dx * dy;
xz += dx * dz;
yy += dy * dy;
yz += dy * dz;
zz += dz * dz;
}
cov[0] = xx / vertexNum;
cov[1] = xy / vertexNum;
cov[2] = xz / vertexNum;
cov[3] = xy / vertexNum;
cov[4] = yy / vertexNum;
cov[5] = yz / vertexNum;
cov[6] = xz / vertexNum;
cov[7] = yz / vertexNum;
cov[8] = zz / vertexNum;
}
// 计算协方差矩阵的特征值和特征向量
void ComputeEigen(const double *cov, double *eigenValue, double *eigenVector)
{
double A[9], V[9], d[3];
memcpy(A, cov, sizeof(double) * 9);
UF_MTX_dsyev(3, A, eigenValue, V);
d[0] = eigenValue[0];
d[1] = eigenValue[1];
d[2] = eigenValue[2];
// 对特征值进行排序
if (d[0] < d[1]) { std::swap(d[0], d[1]); UF_MTX_swap_cols(3, V, 0, 1); }
if (d[1] < d[2]) { std::swap(d[1], d[2]); UF_MTX_swap_cols(3, V, 1, 2); }
if (d[0] < d[1]) { std::swap(d[0], d[1]); UF_MTX_swap_cols(3, V, 0, 1); }
memcpy(eigenVector, V, sizeof(double) * 9);
}
// 计算OBB盒子信息
void ComputeOBB(const Point3D *vertices, const int &vertexNum, OBB &obb)
{
double cov[9], eigenValue[3], eigenVector[9];
ComputeCovarianceMatrix(vertices, vertexNum, cov);
ComputeEigen(cov, eigenValue, eigenVector);
obb.center = ComputeCenter(vertices, vertexNum);
memcpy(obb.axis[0], &eigenVector[0], sizeof(double) * 3);
memcpy(obb.axis[1], &eigenVector[3], sizeof(double) * 3);
memcpy(obb.axis[2], &eigenVector[6], sizeof(double) * 3);
obb.extent[0] = sqrt(eigenValue[0]);
obb.extent[1] = sqrt(eigenValue[1]);
obb.extent[2] = sqrt(eigenValue[2]);
}
int main(int argc, char *argv[])
{
int vertexNum = 0;
Point3D vertices[MAX_POINT_NUM];
OBB obb;
tag_t objTag = UF_OBJ_NULL;
UF_UI_select_with_single_dialog("Select a body", "Select", &objTag);
if (GetVertices(objTag, vertices, vertexNum) == 0)
{
ComputeOBB(vertices, vertexNum, obb);
printf("OBB Center: (%.3f, %.3f, %.3f)\n", obb.center.x, obb.center.y, obb.center.z);
printf("OBB Axis 1: (%.3f, %.3f, %.3f)\n", obb.axis[0][0], obb.axis[0][1], obb.axis[0][2]);
printf("OBB Axis 2: (%.3f, %.3f, %.3f)\n", obb.axis[1][0], obb.axis[1][1], obb.axis[1][2]);
printf("OBB Axis 3: (%.3f, %.3f, %.3f)\n", obb.axis[2][0], obb.axis[2][1], obb.axis[2][2]);
printf("OBB Extent 1: %.3f\n", obb.extent[0]);
printf("OBB Extent 2: %.3f\n", obb.extent[1]);
printf("OBB Extent 3: %.3f\n", obb.extent[2]);
}
return 0;
}
```
在上面的代码中,我们首先通过 `UF_UI_select_with_single_dialog` 函数获取用户选择的实体,然后再通过 `GetVertices` 函数获取该实体的所有顶点。接着,我们实现了 `ComputeCenter` 函数来计算点集的中心, `ComputeCovarianceMatrix` 函数来计算点集的协方差矩阵, `ComputeEigen` 函数来计算协方差矩阵的特征值和特征向量。最后,我们实现了 `ComputeOBB` 函数来计算实体的OBB盒子信息,并输出结果。
在使用上述代码时,需要注意使用的NX版本是否支持 `UF_MTX_dsyev` 函数和 `UF_MTX_swap_cols` 函数。如果不支持,可以自行实现这两个函数。
阅读全文