1.写出斐波那契二分检索,即使用斐波那契数列二分有序序列,查找某给定元素,找到返回下标,找不到返回-1

时间: 2024-02-04 16:04:26 浏览: 29
好的,斐波那契二分检索可以分为以下几个步骤: 1. 构建一个斐波那契数列,数列中每个数都是前两个数之和,起始值为0和1,直到最后一个数大于等于有序序列的长度为止。 2. 使用斐波那契数列中前一个数作为分割点,将有序序列分为两部分。 3. 比较分割点处的元素与要查找的元素,如果相等,则返回分割点的下标;如果要查找的元素比分割点处的元素小,则在斐波那契数列中向前一步,将分割点更新为前一个斐波那契数,重复步骤2;如果要查找的元素比分割点处的元素大,则在斐波那契数列中向前两步,将分割点更新为前两个斐波那契数之和,重复步骤2。 4. 如果最终在有序序列中未找到要查找的元素,则返回-1。 以下是斐波那契二分检索的Python实现代码: ```python def fibonacci_search(arr, val): # 构建斐波那契数列 fib = [0, 1] while fib[-1] < len(arr): fib.append(fib[-1] + fib[-2]) # 初始化指针和分割点 left, mid, right = 0, 0, len(arr) - 1 while fib: # 获取当前分割点 k = fib.pop() # 计算分割点位置 mid = left + k - 1 if mid > right: mid = right # 比较分割点处的元素与要查找的元素 if arr[mid] == val: return mid elif arr[mid] > val: # 在左半部分继续查找 right = mid - 1 else: # 在右半部分继续查找 left = mid + 1 # 没有找到要查找的元素 return -1 ``` 使用示例: ```python arr = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] val = 7 index = fibonacci_search(arr, val) if index != -1: print("元素 %d 在序列中的下标为 %d" % (val, index)) else: print("元素 %d 不在序列中" % val) ``` 输出结果: ``` 元素 7 在序列中的下标为 3 ```

相关推荐

最新推荐

recommend-type

mips汇编语言实现斐波那契数列的排列

资源包括在Mars环境下,使用mips汇编语言实现斐波那契数列的排列,并输出前n项的下标,十进制数值和十六进制数值。
recommend-type

C#实现斐波那契数列的几种方法整理

主要介绍了C#实现斐波那契数列的几种方法整理,主要介绍了递归,循环,公式和矩阵法等,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

详解python使用递归、尾递归、循环三种方式实现斐波那契数列

本篇文章主要介绍了python使用递归、尾递归、循环三种方式实现斐波那契数列,非常具有实用价值,需要的朋友可以参考下
recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

NX二次开发uc1653 函数介绍

NX二次开发uc1653 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。