total = set(new_df_cols + old_df_cols)
时间: 2023-11-19 08:06:27 浏览: 76
`total = set(new_df_cols + old_df_cols)` 是 Python 中的一个语句,它将 `new_df_cols` 和 `old_df_cols` 两个列表合并成一个新列表,并且去重后返回一个集合对象 `total`,集合中包含了所有出现在 `new_df_cols` 和 `old_df_cols` 中的元素。在 PySpark 中,这段代码用于计算一个新的列名列表,这个列表中包含了 `new_df_cols` 和 `old_df_cols` 两个 DataFrame 的所有列名,且没有重复的列名。在 SQL 中,这个操作可以使用 UNION 操作符来实现,具体的 SQL 语句可能如下所示:
```
SELECT column1, column2, ..., columnN
FROM new_df
UNION
SELECT column1, column2, ..., columnN
FROM old_df
```
其中,`column1, column2, ..., columnN` 是一个包含所有列名的列表,这个列表由 `total` 集合生成。这个查询将 `new_df` 和 `old_df` 两个表的所有列合并起来,并且去掉了重复的列。
相关问题
new_df_cols = new_df.columns old_df_cols = older_df.columns total = set(new_df_cols + old_df_cols) new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns] merge_spec = Window.partitionBy(key_column).orderBy("row_priority") ranked_df=new_df.unionByName(older_df).withColumn("rank", F.rank().over(merge_spec)) return self.update_audit_created_column(ranked_df,key_column).where(F.col("rank") == 1).drop("rank", "row_priority")
这段代码用 PySpark 实现了对两个 DataFrame 进行合并和去重的操作,并添加了一些元数据信息。下面是使用 SQL 实现的代码:
```sql
-- 选取需要合并的列名
WITH new_cols AS (
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'new_df'
),
old_cols AS (
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'older_df'
),
cols AS (
SELECT DISTINCT COLUMN_NAME
FROM (
SELECT COLUMN_NAME FROM new_cols
UNION ALL
SELECT COLUMN_NAME FROM old_cols
)
),
-- 对 new_df 填充空缺的列,并添加 "row_priority" 列
new_df_filled AS (
SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 0 AS row_priority
FROM new_df
),
new_df_selected AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank
FROM (
-- 选取 new_df 中的列,包括填充空缺的列和 "row_priority" 列
SELECT col1, col2, ..., colN, row_priority
FROM new_df_filled
-- 生成 key_column 列,用于分组
CROSS JOIN (SELECT col1 AS key_column FROM new_df_filled) key_columns
)
),
-- 对 older_df 填充空缺的列,并添加 "row_priority" 列
old_df_filled AS (
SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 1 AS row_priority
FROM older_df
),
old_df_selected AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank
FROM (
-- 选取 older_df 中的列,包括填充空缺的列和 "row_priority" 列
SELECT col1, col2, ..., colN, row_priority
FROM old_df_filled
-- 生成 key_column 列,用于分组
CROSS JOIN (SELECT col1 AS key_column FROM old_df_filled) key_columns
)
),
-- 合并两个 DataFrame,并去重
merged_df AS (
SELECT * FROM new_df_selected
UNION ALL
SELECT * FROM old_df_selected
),
-- 选取合并后的第一行
final_df AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY rank) AS row_num
FROM merged_df
)
SELECT col1, col2, ..., colN
FROM final_df
WHERE row_num = 1
```
这段 SQL 代码的实现原理与 PySpark 代码相同,主要分为以下几个步骤:
1. 获取需要合并的列名。
2. 对 new_df 和 older_df 分别进行填充空缺列、添加 "row_priority" 列和选取列的操作,生成 new_df_selected 和 old_df_selected 两个数据集。
3. 将 two_df_selected 进行合并,并添加 rank 列,用于去重。
4. 选取合并后的第一行,得到最终的去重结果。
with cte as{ select case when co1,co2,co3 有值 then co1,co2,co3 else null end as new_column, 0 as row_priority from new_df union all select case when co1,co2,co3 有值 then co1,co2,co3 else null end as order_column, 1 as row_priority from order_df } selct col,co2 from (select col,co2, rank() over(partition By key_column order By (select row_priority from cte )) as rank where rank=1) main这样写有没有漏写下面的语句和new_df_cols = new_df.columns old_df_cols = older_df.columns total = set(new_df_cols + old_df_cols) new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns] merge_spec = Window.partitionBy(key_column).orderBy("row_priority") ranked_df=new_df.unionByName(older_df).withColumn("rank", F.rank().over(merge_spec)) return self.update_audit_created_column(ranked_df,key_column).where(F.col("rank") == 1).drop("rank", "row_priority")
这段代码的功能是将两个DataFrame对象(new_df和older_df)按照指定的key_column进行合并,并为每个合并后的行添加一个rank列,然后选择每个key_column分组中排名为1的行,并删除rank和row_priority列。其中,fill_empty_colums函数是用来填充空列的,update_audit_created_column函数是用来更新审计创建列的。
阅读全文