total = set(new_df_cols + old_df_cols)

时间: 2023-11-19 08:06:27 浏览: 76
`total = set(new_df_cols + old_df_cols)` 是 Python 中的一个语句,它将 `new_df_cols` 和 `old_df_cols` 两个列表合并成一个新列表,并且去重后返回一个集合对象 `total`,集合中包含了所有出现在 `new_df_cols` 和 `old_df_cols` 中的元素。在 PySpark 中,这段代码用于计算一个新的列名列表,这个列表中包含了 `new_df_cols` 和 `old_df_cols` 两个 DataFrame 的所有列名,且没有重复的列名。在 SQL 中,这个操作可以使用 UNION 操作符来实现,具体的 SQL 语句可能如下所示: ``` SELECT column1, column2, ..., columnN FROM new_df UNION SELECT column1, column2, ..., columnN FROM old_df ``` 其中,`column1, column2, ..., columnN` 是一个包含所有列名的列表,这个列表由 `total` 集合生成。这个查询将 `new_df` 和 `old_df` 两个表的所有列合并起来,并且去掉了重复的列。
相关问题

new_df_cols = new_df.columns old_df_cols = older_df.columns total = set(new_df_cols + old_df_cols) new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns] merge_spec = Window.partitionBy(key_column).orderBy("row_priority") ranked_df=new_df.unionByName(older_df).withColumn("rank", F.rank().over(merge_spec)) return self.update_audit_created_column(ranked_df,key_column).where(F.col("rank") == 1).drop("rank", "row_priority")

这段代码用 PySpark 实现了对两个 DataFrame 进行合并和去重的操作,并添加了一些元数据信息。下面是使用 SQL 实现的代码: ```sql -- 选取需要合并的列名 WITH new_cols AS ( SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'new_df' ), old_cols AS ( SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'older_df' ), cols AS ( SELECT DISTINCT COLUMN_NAME FROM ( SELECT COLUMN_NAME FROM new_cols UNION ALL SELECT COLUMN_NAME FROM old_cols ) ), -- 对 new_df 填充空缺的列,并添加 "row_priority" 列 new_df_filled AS ( SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 0 AS row_priority FROM new_df ), new_df_selected AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank FROM ( -- 选取 new_df 中的列,包括填充空缺的列和 "row_priority" 列 SELECT col1, col2, ..., colN, row_priority FROM new_df_filled -- 生成 key_column 列,用于分组 CROSS JOIN (SELECT col1 AS key_column FROM new_df_filled) key_columns ) ), -- 对 older_df 填充空缺的列,并添加 "row_priority" 列 old_df_filled AS ( SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 1 AS row_priority FROM older_df ), old_df_selected AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank FROM ( -- 选取 older_df 中的列,包括填充空缺的列和 "row_priority" 列 SELECT col1, col2, ..., colN, row_priority FROM old_df_filled -- 生成 key_column 列,用于分组 CROSS JOIN (SELECT col1 AS key_column FROM old_df_filled) key_columns ) ), -- 合并两个 DataFrame,并去重 merged_df AS ( SELECT * FROM new_df_selected UNION ALL SELECT * FROM old_df_selected ), -- 选取合并后的第一行 final_df AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY rank) AS row_num FROM merged_df ) SELECT col1, col2, ..., colN FROM final_df WHERE row_num = 1 ``` 这段 SQL 代码的实现原理与 PySpark 代码相同,主要分为以下几个步骤: 1. 获取需要合并的列名。 2. 对 new_df 和 older_df 分别进行填充空缺列、添加 "row_priority" 列和选取列的操作,生成 new_df_selected 和 old_df_selected 两个数据集。 3. 将 two_df_selected 进行合并,并添加 rank 列,用于去重。 4. 选取合并后的第一行,得到最终的去重结果。

with cte as{ select case when co1,co2,co3 有值 then co1,co2,co3 else null end as new_column, 0 as row_priority from new_df union all select case when co1,co2,co3 有值 then co1,co2,co3 else null end as order_column, 1 as row_priority from order_df } selct col,co2 from (select col,co2, rank() over(partition By key_column order By (select row_priority from cte )) as rank where rank=1) main这样写有没有漏写下面的语句和new_df_cols = new_df.columns old_df_cols = older_df.columns total = set(new_df_cols + old_df_cols) new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns] merge_spec = Window.partitionBy(key_column).orderBy("row_priority") ranked_df=new_df.unionByName(older_df).withColumn("rank", F.rank().over(merge_spec)) return self.update_audit_created_column(ranked_df,key_column).where(F.col("rank") == 1).drop("rank", "row_priority")

这段代码的功能是将两个DataFrame对象(new_df和older_df)按照指定的key_column进行合并,并为每个合并后的行添加一个rank列,然后选择每个key_column分组中排名为1的行,并删除rank和row_priority列。其中,fill_empty_colums函数是用来填充空列的,update_audit_created_column函数是用来更新审计创建列的。
阅读全文

相关推荐

import requests from bs4 import BeautifulSoup import matplotlib.pyplot as plt import pandas as pd PLAYERS_LIMIT = 25 TABLE_CLASS_NAME = "players_table" plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def get_top_players_scores(limit=PLAYERS_LIMIT, table_class_name=TABLE_CLASS_NAME): url = "https://nba.hupu.com/stats/players" response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") players = [] scores = [] table = soup.find("table", class_=table_class_name) rows = table.find_all("tr") for row in rows[1:limit+1]: cols = row.find_all("td") player = cols[1].text.strip() score_range = cols[4].text.strip() score_parts = score_range.split("-") min_score = float(score_parts[0]) max_score = float(score_parts[1]) score = int((min_score + max_score) / 2) players.append(player) scores.append(score) return players, scores def plot_top_players_scores(players, scores): data = {"Player": players, "Score": scores} df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(12, 6)) ax.bar(players, scores, color='green', alpha=0.6) ax.set_xlabel('球员', fontsize=12) ax.set_ylabel('得分', fontsize=12) ax.set_title('NBA球员得分', fontsize=14) plt.xticks(rotation=45, ha='right', fontsize=8) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) for i, score in enumerate(scores): ax.text(i, score+0.5, str(score), ha='center', va='bottom') fig.tight_layout() plt.show() if __name__ == "__main__": players, scores = get_top_players_scores() plot_top_players_scores(players, scores)为这段代码添加一个将数据写入excel的功能

最新推荐

recommend-type

Pandas的read_csv函数参数分析详解

11. **mangle_dupe_cols**: 默认True,处理重复的列名。设置为False可能会导致数据丢失。 12. **dtype**: 自定义列的数据类型,可以是字典,键是列名,值是数据类型。 13. **engine**: 指定解析引擎,默认为'...
recommend-type

基于纯verilogFPGA的双线性差值视频缩放 功能:利用双线性差值算法,pc端HDMI输入视频缩小或放大,然后再通过HDMI输出显示,可以任意缩放 缩放模块仅含有ddr ip,手写了 ram,f

基于纯verilogFPGA的双线性差值视频缩放 功能:利用双线性差值算法,pc端HDMI输入视频缩小或放大,然后再通过HDMI输出显示,可以任意缩放。 缩放模块仅含有ddr ip,手写了 ram,fifo 代码,可以较为轻松地移植到其他平台。 硬件平台:易灵思 ti60f225 EDA平台:efinity
recommend-type

【java毕业设计】智慧社区智慧社区管理员密码修改与重置系统(源代码+论文+PPT模板).zip

zip里包含源码+论文+PPT,有java环境就可以运行起来 ,功能说明: 文档开篇阐述了随着计算机技术、通信技术和网络技术的快速发展,智慧社区门户网站的建设成为了可能,并被视为21世纪信息产业的主要发展方向之一 强调了网络信息管理技术、数字化处理技术和数字式信息资源建设在国际竞争中的重要性。 指出了智慧社区门户网站系统的编程语言为Java,数据库为MYSQL,并实现了新闻资讯、社区共享、在线影院等功能。 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。
recommend-type

基于51单片机的一个智能密码锁设计.7z

基于51单片机的一个智能密码锁设计.7z
recommend-type

《STM32单片机+2x180-SG90+2x360-SG90+OLED屏幕》源代码

《基于STM32的舵机控制系统设计》毕业设计项目 1.STM32单片机+2x180_SG90+2x360_SG90+OLED屏幕 2.OLED屏幕显示舵机的方向、速度、角度各项数据 3.按键1:控制180度舵机正向转动角度      4.按键2:控制180度舵机反向转动角度 5.按键3:控制360度舵机正向转动并且控制舵机速度      6.按键4:控制360度舵机反向转动并且控制舵机速度 7.代码里面含有注释 8.硬件实物接上线就能直接运行
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"