以邻接表作存储结构实现求从源点到其余各顶点的最短路径的 Dijkstra C语言算法。
时间: 2023-08-06 10:03:51 浏览: 89
好的,下面是使用 C 语言实现 Dijkstra 算法的代码,假设图的邻接表存储在结构体数组 adjacency_list 中:
```c
#include <stdio.h>
#include <limits.h>
// 定义图的邻接表结构体
struct Edge {
int dst;
int weight;
struct Edge* next;
};
struct Graph {
int num_vertices;
struct Edge** adjacency_list;
};
// 创建图的邻接表
struct Graph* create_graph(int num_vertices) {
struct Graph* graph = (struct Graph*) malloc(sizeof(struct Graph));
graph->num_vertices = num_vertices;
graph->adjacency_list = (struct Edge**) malloc(num_vertices * sizeof(struct Edge*));
for (int i = 0; i < num_vertices; i++) {
graph->adjacency_list[i] = NULL;
}
return graph;
}
// 添加边到图的邻接表
void add_edge(struct Graph* graph, int src, int dst, int weight) {
struct Edge* edge = (struct Edge*) malloc(sizeof(struct Edge));
edge->dst = dst;
edge->weight = weight;
edge->next = graph->adjacency_list[src];
graph->adjacency_list[src] = edge;
}
// Dijkstra 算法
void dijkstra(struct Graph* graph, int source, int* dist) {
// 初始化
int n = graph->num_vertices;
for (int i = 0; i < n; i++) {
dist[i] = INT_MAX;
}
dist[source] = 0;
bool visited[n];
for (int i = 0; i < n; i++) {
visited[i] = false;
}
// 堆优化
struct HeapNode {
int dist;
int u;
};
struct HeapNode heap[n];
int heap_size = 0;
bool in_heap[n];
for (int i = 0; i < n; i++) {
in_heap[i] = false;
}
// 将源点加入堆
heap[heap_size].dist = 0;
heap[heap_size].u = source;
heap_size++;
in_heap[source] = true;
// 循环直到堆为空
while (heap_size > 0) {
// 从堆中弹出距离源点最近的点
int u = heap[0].u;
visited[u] = true;
heap_size--;
if (heap_size > 0) {
heap[0] = heap[heap_size];
}
in_heap[u] = false;
// 更新 u 的每一个邻居的 dist 值
struct Edge* edge = graph->adjacency_list[u];
while (edge != NULL) {
int v = edge->dst;
int w = edge->weight;
if (!visited[v] && dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
// 将 v 加入堆
if (!in_heap[v]) {
heap[heap_size].dist = dist[v];
heap[heap_size].u = v;
heap_size++;
in_heap[v] = true;
} else {
// 如果 v 已经在堆中,更新堆中 v 的 dist 值
for (int i = 0; i < heap_size; i++) {
if (heap[i].u == v) {
heap[i].dist = dist[v];
break;
}
}
}
// 调整堆
int i = heap_size - 1;
while (i > 0) {
int parent = (i - 1) / 2;
if (heap[parent].dist <= heap[i].dist) {
break;
}
struct HeapNode tmp = heap[parent];
heap[parent] = heap[i];
heap[i] = tmp;
i = parent;
}
}
edge = edge->next;
}
}
}
// 测试
int main() {
struct Graph* graph = create_graph(5);
add_edge(graph, 0, 1, 10);
add_edge(graph, 0, 3, 5);
add_edge(graph, 1, 2, 1);
add_edge(graph, 1, 3, 2);
add_edge(graph, 2, 4, 4);
add_edge(graph, 3, 1, 3);
add_edge(graph, 3, 2, 9);
add_edge(graph, 3, 4, 2);
add_edge(graph, 4, 0, 7);
add_edge(graph, 4, 2, 6);
int dist[5];
dijkstra(graph, 0, dist);
for (int i = 0; i < 5; i++) {
printf("dist[%d] = %d\n", i, dist[i]);
}
return 0;
}
```
其中,堆优化使用了一个结构体数组 heap 和一个布尔数组 in_heap,heap 用于存储堆中的元素,in_heap 用于判断一个点是否已经在堆中。时间复杂度为 O(ElogV),其中 E 表示边的数量,V 表示点的数量。
阅读全文