用numpy库实现softmax回归
时间: 2023-05-20 11:03:42 浏览: 90
基于python实现softmax回归softmax Regression
可以使用以下代码实现softmax回归:
```
import numpy as np
def softmax_regression(X, y, num_classes, learning_rate, num_iterations):
# Initialize weights and biases
num_features = X.shape[1]
W = np.zeros((num_features, num_classes))
b = np.zeros((1, num_classes))
# Gradient descent
for i in range(num_iterations):
# Forward propagation
Z = np.dot(X, W) + b
A = np.exp(Z) / np.sum(np.exp(Z), axis=1, keepdims=True)
# Backward propagation
dZ = A - y
dW = np.dot(X.T, dZ)
db = np.sum(dZ, axis=0, keepdims=True)
# Update weights and biases
W -= learning_rate * dW
b -= learning_rate * db
return W, b
```
其中,X是输入特征矩阵,y是标签矩阵,num_classes是分类数,learning_rate是学习率,num_iterations是迭代次数。函数返回训练好的权重矩阵W和偏置矩阵b。
阅读全文