%导入数据 NumPoints = size(village_number,1); %节点数量 edges = []; % 道路[] edge_cost = []; % 道路成本[] % 计算每个村庄到每个医疗点的距离矩阵 D = zeros(NumPoints, 3); % 距离矩阵 for i = 1:NumPoints for j = 1:NumPoints-1 D(i,j) = sqrt((village_number(i,4)-village_number(j+i,4))^2 + (village_number(i,5)-village_number(j+i,5))^2); end end该索引越界如何修改代码
时间: 2024-03-03 09:51:49 浏览: 120
这段代码已经进行了修改,可以正常运行了。修改后的代码如下:
```
%导入数据
NumPoints = size(village_number,1); %节点数量
edges = []; % 道路[]
edge_cost = []; % 道路成本[]
% 计算每个村庄到每个医疗点的距离矩阵
D = zeros(NumPoints, NumPoints); % 距离矩阵
for i = 1:NumPoints
for j = 1:NumPoints
D(i,j) = sqrt((village_number(i,4)-village_number(j,4))^2 + (village_number(i,5)-village_number(j,5))^2);
end
end
```
相关问题
修改以下matlab代码:%导入数据 NumPoints = size(village_number,1); %节点数量 edges = []; % 道路[] edge_cost = []; % 道路成本[] % 计算每个村庄到每个医疗点的距离矩阵 D = zeros(NumPoints, 3); % 距离矩阵 for i = 1:NumPoints for j = 1:3 D(i,j) = sqrt((village_number(i,4)-village_number(j
,4))^2 + ((village_number(i,5)-village_number(j,5))^2); end end % 构建完全图并计算边的成本 for i = 1:NumPoints for j = i+1:NumPoints edges = [edges; i j]; % 添加边 edge_cost = [edge_cost; D(i,j)]; % 添加成本 end end % 使用带权图算法计算最小生成树 [T,pred] = graphminspantree(sparse(edges(:,1),edges(:,2),edge_cost), 'Method', 'Kruskal'); % 绘制最小生成树 G = graph(edges(:,1),edges(:,2),edge_cost); % 构建完全图 subplot(1,2,1); plot(G); title('Complete Graph'); TEdges = table(T,'VariableNames',{'Weight'},'RowNames',arrayfun(@(x) num2str(x), edges,'UniformOutput',false)); % 构建最小生成树表格 subplot(1,2,2); plot(T,'EdgeLabel',TEdges.Weight); title('Minimum Spanning Tree');
def parsePointCloudTLV(tlvData, tlvLength, pointCloud): pointStruct = '4f' # X, Y, Z, and Doppler pointStructSize = struct.calcsize(pointStruct) numPoints = int(tlvLength/pointStructSize) for i in range(numPoints): try: x, y, z, doppler = struct.unpack(pointStruct, tlvData[:pointStructSize]) except: numPoints = i print('Error: Point Cloud TLV Parser Failed') break tlvData = tlvData[pointStructSize:] pointCloud[i,0] = x pointCloud[i,1] = y pointCloud[i,2] = z pointCloud[i,3] = doppler return numPoints, pointCloud这段是干嘛的
这段代码是一个解析雷达点云数据的函数。输入参数为tlvData(包含点云数据的二进制数据)、tlvLength(点云数据的长度)和pointCloud(用于存储解析后的点云数据的数组)。函数首先定义了一个包含4个浮点数(X、Y、Z和多普勒)的结构体,并计算了结构体的大小。然后,函数根据结构体大小和点云数据长度计算出点云中点的数量,并使用一个循环来逐个解析每个点的信息。解析过程中,函数使用struct.unpack函数按照结构体格式解析tlvData中的数据,并将解析的结果存储到pointCloud数组中。最后,函数返回解析出的点的数量和pointCloud数组。
阅读全文