the function performs symmetric t-sne on pairwise similarity matrix p % to c

时间: 2023-05-15 07:02:46 浏览: 129
该函数在配对相似性矩阵P到C上执行对称T-SNE。T-SNE是一种流行的降维技术,用于可视化高维数据。它通过将相似的数据点映射到低维空间中的邻近点来实现。T-SNE可以使用相似性矩阵来计算数据点之间的相似性。对称T-SNE是一种变形,它通过计算两个相似矩阵之间的相似性来建立对称相似矩阵。在此函数中,它将配对相似性矩阵P到C作为输入数据,并使用对称T-SNE算法将其映射到低维空间中,以便对数据进行可视化分析。此外,它还可以计算在低维空间中的数据点之间的相似性,以便更好地理解它们之间的关系。这个函数非常适合在聚类分析和可视化密集高维数据时使用。
相关问题

MATLAB中t-SNE源代码

以下是MATLAB中t-SNE算法的源代码示例: ```matlab function mappedX = tsne(X, no_dims, initial_dims, perplexity) %TSNE t-distributed Stochastic Neighbor Embedding % % mappedX = tsne(X, no_dims, initial_dims, perplexity) % % The function runs the t-SNE algorithm on dataset X to reduce its % dimensionality to no_dims. The initial solution is given by initial_dims % and the perplexity of the Gaussian kernel is given by perplexity (typically % a value between 5 and 50). The variable mappedX returns the two-dimensional % data points in mappedX. % % Note: The algorithm is memory intensive; e.g. for N=5000, you will need % about 2GB of RAM. % % (C) Laurens van der Maaten, 2008 % University of California, San Diego if ~exist('no_dims', 'var') || isempty(no_dims) no_dims = 2; end if ~exist('initial_dims', 'var') || isempty(initial_dims) initial_dims = min(50, size(X, 2)); end if ~exist('perplexity', 'var') || isempty(perplexity) perplexity = 30; end % First check whether we already have an initial solution if size(X, 2) == 1 && no_dims == 1 % If X is one-dimensional, we only need to embed it in one dimension mappedX = X; return elseif no_dims > size(X, 2) % If the number of input dimensions is smaller than the desired number % of output dimensions, simply pad the matrix with zeros. warning(['Target dimensionality reduced to ' num2str(size(X, 2)) ' by PCA.']); no_dims = size(X, 2); end if ~exist('Y', 'var') || isempty(Y) Y = randn(size(X, 1), no_dims); end % Compute pairwise distances sum_X = sum(X .^ 2, 2); D = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (X * X'))); % Compute joint probabilities P = d2p(D, perplexity, 1e-5); % compute affinities using fixed perplexity clear D % Run t-SNE mappedX = tsne_p(P, Y, 1000); ``` 这个函数调用了`d2p`函数和`tsne_p`函数。其中`d2p`函数的代码如下: ```matlab function P = d2p(D, perplexity, tol) %D2P Identifies appropriate sigma's to get kk NNs up to some tolerance % % P = d2p(D, perplexity, tol) % % Identifies the appropriate sigma to obtain a Gaussian kernel matrix with a % certain perplexity (approximately constant conditional entropy) for a % set of Euclidean input distances D. The desired perplexity is specified % by perplexity. The function returns the final Gaussian kernel matrix P, % whose elements P_{i,j} represent the probability of observing % datapoint j given datapoint i, normalized so that the sum over all i and j % is 1. % % The function iteratively searches for a value of sigma that results in a % Gaussian distribution over the perplexity-defined number of nearest % neighbors of each point. % % Note: The function is designed for use with the large data sets and % requires sufficient memory to store the entire NxN distance matrix for % your NxP data matrix X. % % Note: The function may return P=NaN, indicating numerical difficulties. % In such cases, the 'tol' parameter should be increased and the function % should be rerun. % % The function is based on earlier MATLAB code by Laurens van der Maaten % (lvdmaaten@gmail.com) and uses ideas from the following paper: % % * D. L. D. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised % learning of low dimensional manifolds. Journal of Machine Learning % Research 4(2003) 119-155. % % (C) Joshua V. Dillon, 2014 % Initialize some variables [n, ~] = size(D); % number of instances P = zeros(n, n); % empty probability matrix beta = ones(n, 1); % empty precision vector logU = log(perplexity); % log(perplexity) (H) % Compute P-values disp('Computing P-values...'); for i=1:n if mod(i, 500) == 0 disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']); end % Compute the Gaussian kernel and entropy for the current precision [P(i,:), beta(i)] = gaussiandist(D(i,:), tol, beta(i), logU); end disp('Mean value of sigma: '); disp(mean(sqrt(1 ./ beta))); % Make sure P-values are symmetric P = (P + P') ./ (2 * n); % Zero any negative values P(P < 0) = 0; end %------------------------------------------------------------------------- function [P, beta] = gaussiandist(x, tol, beta, logU) %GAUSSIANDIST Computes the Gaussian kernel and entropy for a perplexity %defined by logU. % % [P, beta] = gaussiandist(x, tol, beta, logU) % % Returns the Gaussian kernel and entropy for a given perplexity, defined % by logU, for the NxD matrix X. The function iteratively searches for a % value of sigma that results in a Gaussian distribution over the % perplexity-defined number of nearest neighbors of each point. % % Note: The function is designed for use with the large data sets and % requires sufficient memory to store the NxN distance matrix. % % Note: The function may return P=NaN, indicating numerical difficulties. % In such cases, the 'tol' parameter should be increased and the function % should be rerun. % % The function is based on earlier MATLAB code by Laurens van der Maaten % (lvdmaaten@gmail.com) and uses ideas from the following paper: % % * D. L. D. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised % learning of low dimensional manifolds. Journal of Machine Learning % Research 4(2003) 119-155. % % (C) Joshua V. Dillon, 2014 % Initialize some variables [n, ~] = size(x); % number of instances P = zeros(1, n); % empty probability vector sumP = realmin; % minimum value to avoid log(0) K = 0; % number of nearest neighbors % Search for good sigma, iterating until we have the perplexity we want while abs(sumP - logU) > tol % Compute Gaussian kernel and entropy for current precision P = exp(-beta * x).^2; sumP = sum(P); H = log(sumP) + beta * sum(x .* P) / sumP; % Adjust beta according to the perplexity if isnan(H) beta = beta * 2; P = NaN(1, n); continue; end if H > logU betaNew = beta * 0.5; else betaNew = beta * 2; end % Update precision beta = betaNew; end % Return final Gaussian kernel row for this point P = P / sumP; end ``` 最后,`tsne_p`函数的代码如下: ```matlab function Y = tsne_p(P, labels, no_dims) %TSNE_P Performs symmetric t-SNE on affinity matrix P % % Y = tsne_p(P, labels, no_dims) % % The function performs symmetric t-SNE on pairwise similarity matrix P % to reduce its dimensionality to no_dims. The matrix P is assumed to be % symmetric, sum up to 1, and have zeros on its diagonal. % The labels parameter is an optional vector of labels that can be used to % color the resulting scatter plot. The function returns the two-dimensional % data points in Y. % The perplexity is the only parameter the user normally needs to adjust. % In most cases, a value between 5 and 50 works well. % % Note: This implementation uses the "fast" version of t-SNE. This should % run faster than the original version but may also have different numerical % properties. % % Note: The function is memory intensive; e.g. for N=5000, you will need % about 2GB of RAM. % % (C) Laurens van der Maaten, 2008 % University of California, San Diego if ~exist('labels', 'var') labels = []; end if ~exist('no_dims', 'var') || isempty(no_dims) no_dims = 2; end % First check whether we already have an initial solution if size(P, 1) ~= size(P, 2) error('Affinity matrix P should be square'); end if ~isempty(labels) && length(labels) ~= size(P, 1) error('Mismatch in number of labels and size of P'); end % Initialize variables n = size(P, 1); % number of instances momentum = 0.5; % initial momentum final_momentum = 0.8; % value to which momentum is changed mom_switch_iter = 250; % iteration at which momentum is changed stop_lying_iter = 100; % iteration at which lying about P-values is stopped max_iter = 1000; % maximum number of iterations epsilon = 500; % initial learning rate min_gain = .01; % minimum gain for delta-bar-delta % Initialize the solution Y = randn(n, no_dims); dY = zeros(n, no_dims); iY = zeros(n, no_dims); gains = ones(n, no_dims); % Compute P-values P = P ./ sum(P(:)); P = max(P, realmin); P = P * 4; % early exaggeration P = min(P, 1e-12); % Lie about the P-vals to find better local minima P = P ./ sum(P(:)); P = max(P, realmin); const = sum(P(:) .* log(P(:))); for iter = 1:max_iter % Compute pairwise affinities sum_Y = sum(Y .^ 2, 2); num = 1 ./ (1 + bsxfun(@plus, sum_Y, bsxfun(@plus, sum_Y', -2 * (Y * Y')))); num(1:n+1:end) = 0; Q = max(num ./ sum(num(:)), realmin); % Compute gradient PQ = P - Q; for i=1:n dY(i,:) = sum(bsxfun(@times, PQ(:,i), bsxfun(@minus, Y, Y(i,:))), 1); end % Perform the update if iter < stop_lying_iter momentum = min_gain * momentum + (1 - min_gain) * dY; else momentum = final_momentum; end gains = (gains + .2) .* (sign(dY) ~= sign(iY)) + ... (gains * .8) .* (sign(dY) == sign(iY)); gains(gains < min_gain) = min_gain; iY = momentum; dY = gains .* momentum; Y = Y + dY; Y = bsxfun(@minus, Y, mean(Y, 1)); % Compute current value of cost function if ~rem(iter, 10) C = const - sum(P(:) .* log(Q(:))); if ~isempty(labels) disp(['Iteration ' num2str(iter) ': error is ' num2str(C) ', norm of gradient is ' num2str(norm(dY))]); end end % Stop lying about P-values if iter == stop_lying_iter P = P ./ 4; end end % Return solution if iter == max_iter disp(['Maximum number of iterations reached (' num2str(max_iter) ')']); end if ~isempty(labels) figure, scatter(Y(:,1), Y(:,2), 9, labels, 'filled'); end end ```

翻译 To ascertain that the improvement of dipIQ is statistically significant, we carry out a two sample T-test (with a 95% confidence) between PLCC values obtained by different models on LIVE [86]. After comparing every possible pairs of OU-BIQA models, the results are summarized in Table V, where a symbol “1” means the row model performs signifi- cantly better than the column model, a symbol “0” means the opposite, and a symbol “-” indicates that the row and column models are statistically indistinguishable. It can be observed that dipIQ is statistically better than dipIQ∗, which is better than all previous OU-BIQA models.

为了确保 dipIQ 的改进在统计上具有显著性,我们在 LIVE 数据集 [86] 上对不同模型得到的 PLCC 值进行了双样本 T 检验(置信度为95%)。在比较了 OU-BIQA 模型的所有可能配对后,结果总结如表 V 所示。其中,“1”表示行模型显著优于列模型,“0”表示相反,而“-”表示行和列模型在统计上无法区分。可以观察到 dipIQ 在统计上优于 dipIQ∗,后者优于所有先前的 OU-BIQA 模型。
阅读全文

相关推荐

精简下面表达:Existing protein function prediction methods integrate PPI networks and multivariate bioinformatics data to improve the performance of function prediction. By combining multivariate information, the interactions between proteins become diverse. Different interactions’ functions in functional prediction are various. Combining multiple interactions simply between two proteins can effectively reduce the effect of false negatives and increase the number of predicted functions, but it can also increase the number of false positive functions, which contribute to nonobvious enhancement for the overall functional prediction performance. In this article, we have presented a framework for protein function prediction algorithms based on PPI network and semantic similarity with the addition of protein hierarchical functions to them. The framework relies on diverse clustering algorithms and the calculation of protein semantic similarity for protein function prediction. Classification and similarity calculations for protein pairs clustered by the functional feature are more accurate and reliable, allowing for the prediction of protein function at different functional levels from different proteomes, and giving biological applications greater flexibility.The method proposed in this paper performs well on protein data from wine yeast cells, but how well it matches other data remains to be verified. Yet until now, most unknown proteins have only been able to predict protein function by calculating similarities to their homologues. The predictions result of those unknown proteins without homologues are unstable because they are relatively isolated in the protein interaction network. It is difficult to find one protein with high similarity. In the framework proposed in this article, the number of features selected after clustering and the number of protein features selected for each functional layer has a significant impact on the accuracy of subsequent functional predictions. Therefore, when making feature selection, it is necessary to select as many functional features as possible that are important for the whole interaction network. When an incorrect feature was selected, the prediction results will be somewhat different from the actual function. Thus as a whole, the method proposed in this article has improved the accuracy of protein function prediction based on the PPI network method to a certain extent and reduces the probability of false positive prediction results.

用c++解决Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1 ≤ S ≤ N ≤ 100, 1 ≤ M ≤ 100, V is real number, 0 ≤ V ≤ 103. For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2 ≤ rate ≤ 102, 0 ≤ commission ≤ 102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO.

After reset, the Kryo Silver core 0 comes out of reset and then executes PBL On Kryo Silver core 0, applications PBL initializes hardware (clocks, and so on), CPU caches and MMU, and detects the boot device as per the boot option configuration:  Default boot option: UFS > SD > USB  Default boot option: overridden by EDL cookie or Force USB GPIO 2a. Loads and authenticates XBL-SEC (region #0) from the boot device to OCIMEM 2b. Loads and authenticates XBL-Loader (region #1) from the boot device to Boot IMEM 2c. Loads and authenticates XBL-Debug (region #2) from the boot device to OCIMEM Jumps to XBL-SEC 3. XBL-SEC runs the security configuration in EL3 mode, and then executes the XBL-Loader in EL1 mode XBL-Loader initializes hardware and firmware images, CPU caches, MMU, boot device, XBLConfig, PMIC driver, and DDR. It performs DDR training if applicable, executes an SCM call to XBL-SEC to initialize PIMEM, and initializes clocks and configures the clock frequencies as per clock plan 4a. Loads and authenticates applications debug policy (APDP) image from the boot device 4b. If, DLOAD cookie is set, loads, and authenticates XBL-RAM dump and jumps to XBL-RAM dump to collect crash dump 4c. Initializes SMEM (shared memory) and fills platform ID and RAM partition table 4d. Loads and authenticates AOP image from the boot device and then bring AOP out of reset 4e. Loads and authenticates DEVCFG (TZ device configuration) image from the boot device 4f. Loads SEC.dat (fuse blowing data) image from the boot storage if exists 4g. Loads and authenticates QTEE image from the boot device 4h. Loads and authenticates QHEE image from the boot device 4i. Loads and authenticates ABL image from the boot device 4j. Executes an SCM call to XBL-SEC to jump to QTEE cold boot是什么意思

最新推荐

recommend-type

教师节主题班会.pptx

教师节主题班会.pptx
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建
recommend-type

在设计高性能模拟电路时,如何根据应用需求选择合适的运算放大器,并评估供电对电路性能的影响?

在选择运算放大器以及考虑供电对模拟电路性能的影响时,您需要掌握一系列的关键参数和设计准则。这包括运算放大器的增益带宽积(GBWP)、输入偏置电流、输入偏置电压、输入失调电压、供电范围、共模抑制比(CMRR)、电源抑制比(PSRR)等。合理的选择运算放大器需考虑电路的输入和输出范围、负载大小、信号频率、温度系数、噪声水平等因素。而供电对性能的影响则体现在供电电压的稳定性、供电噪声、电源电流消耗、电源抑制比等方面。为了深入理解这些概念及其在设计中的应用,请参考《模拟电路设计:艺术、科学与个性》一书,该书由模拟电路设计领域的大师Jim Williams所著。您将通过书中的丰富案例学习如何针对不同应用
recommend-type

掌握JavaScript加密技术:客户端加密核心要点

资源摘要信息:"本文将详细阐述客户端加密的要点,特别是针对使用JavaScript进行相关操作的方法和技巧。" 一、客户端加密的定义与重要性 客户端加密指的是在用户设备(客户端)上对数据进行加密处理,以防止数据在传输过程中被非法截取、篡改或读取。这种方法提高了数据的安全性,尤其是在网络传输过程中,能够有效防止敏感信息泄露。客户端加密通常与服务端加密相对,两者相互配合,共同构建起一个更加强大的信息安全防御体系。 二、客户端加密的类型 客户端加密可以分为对称加密和非对称加密两种。 1. 对称加密:使用相同的密钥进行加密和解密。这种方式加密速度快,但是密钥的分发和管理是个问题,因为任何知道密钥的人都可以解密信息。 2. 非对称加密:使用一对密钥,即公钥和私钥。公钥用于加密数据,而私钥用于解密。这种加密方式解决了密钥分发的问题,因为即使公钥被公开,没有私钥也无法解密数据。 三、JavaScript中实现客户端加密的方法 1. Web Cryptography API - Web Cryptography API是浏览器提供的一个原生加密API,支持公钥、私钥加密、散列函数、签名、验证和密钥生成等多种加密操作。通过使用Web Cryptography API,可以很容易地在客户端实现加密和解密。 2. CryptoJS - CryptoJS是一个流行的JavaScript加密库,它提供了许多加密算法,包括对称加密算法(如AES、DES等)和非对称加密算法(如RSA、ECC等)。它还提供了散列函数和消息认证码(MAC)算法。CryptoJS易于使用,而且提供了很多实用的示例代码。 3. Forge - Forge是一个安全和加密工具的JavaScript库。它提供了包括但不限于加密、签名、散列、数字证书、SSL/TLS协议等安全功能。使用Forge可以让开发者在不深入了解加密原理的情况下,也能在客户端实现复杂的加密操作。 四、客户端加密的关键实践 1. 密钥管理:确保密钥安全是客户端加密的关键。需要合理地生成、存储和分发密钥。 2. 加密算法选择:根据不同的安全需求和性能考虑,选择合适的安全加密算法。 3. 前后端协同:服务端和客户端需要协同工作,以确保加密过程的完整性和数据的一致性。 4. 错误处理和日志记录:确保系统能够妥善处理加密过程中可能出现的错误,并记录相关日志,以便事后分析和追踪。 五、客户端加密的安全注意事项 1. 防止时序攻击:时序攻击是一种通过分析加密操作所需时间来猜测密钥的方法。在编码时,要注意保证所有操作的时间一致。 2. 防止重放攻击:重放攻击指的是攻击者截获并重发合法的加密信息,以达到非法目的。需要通过添加时间戳、序列号或其他机制来防止重放攻击。 3. 防止侧信道攻击:侧信道攻击是指攻击者通过分析加密系统在运行时的物理信息(如功耗、电磁泄露、声音等)来获取密钥信息。在设计加密系统时,要尽量减少这些物理信息的泄露。 六、总结 客户端加密是现代网络信息安全中不可缺少的一环。通过理解上述加密方法、实践要点和安全注意事项,开发者能够更好地在客户端使用JavaScript实现数据加密,保障用户的隐私和数据的安全性。需要注意的是,客户端加密并不是万能的,它需要与服务端加密、HTTPS协议等其他安全措施一起配合,形成全方位的保护机制。