the function performs symmetric t-sne on pairwise similarity matrix p % to c

时间: 2023-05-15 20:02:46 浏览: 141
该函数在配对相似性矩阵P到C上执行对称T-SNE。T-SNE是一种流行的降维技术,用于可视化高维数据。它通过将相似的数据点映射到低维空间中的邻近点来实现。T-SNE可以使用相似性矩阵来计算数据点之间的相似性。对称T-SNE是一种变形,它通过计算两个相似矩阵之间的相似性来建立对称相似矩阵。在此函数中,它将配对相似性矩阵P到C作为输入数据,并使用对称T-SNE算法将其映射到低维空间中,以便对数据进行可视化分析。此外,它还可以计算在低维空间中的数据点之间的相似性,以便更好地理解它们之间的关系。这个函数非常适合在聚类分析和可视化密集高维数据时使用。
相关问题

MATLAB中t-SNE源代码

以下是MATLAB中t-SNE算法的源代码示例: ```matlab function mappedX = tsne(X, no_dims, initial_dims, perplexity) %TSNE t-distributed Stochastic Neighbor Embedding % % mappedX = tsne(X, no_dims, initial_dims, perplexity) % % The function runs the t-SNE algorithm on dataset X to reduce its % dimensionality to no_dims. The initial solution is given by initial_dims % and the perplexity of the Gaussian kernel is given by perplexity (typically % a value between 5 and 50). The variable mappedX returns the two-dimensional % data points in mappedX. % % Note: The algorithm is memory intensive; e.g. for N=5000, you will need % about 2GB of RAM. % % (C) Laurens van der Maaten, 2008 % University of California, San Diego if ~exist('no_dims', 'var') || isempty(no_dims) no_dims = 2; end if ~exist('initial_dims', 'var') || isempty(initial_dims) initial_dims = min(50, size(X, 2)); end if ~exist('perplexity', 'var') || isempty(perplexity) perplexity = 30; end % First check whether we already have an initial solution if size(X, 2) == 1 && no_dims == 1 % If X is one-dimensional, we only need to embed it in one dimension mappedX = X; return elseif no_dims > size(X, 2) % If the number of input dimensions is smaller than the desired number % of output dimensions, simply pad the matrix with zeros. warning(['Target dimensionality reduced to ' num2str(size(X, 2)) ' by PCA.']); no_dims = size(X, 2); end if ~exist('Y', 'var') || isempty(Y) Y = randn(size(X, 1), no_dims); end % Compute pairwise distances sum_X = sum(X .^ 2, 2); D = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (X * X'))); % Compute joint probabilities P = d2p(D, perplexity, 1e-5); % compute affinities using fixed perplexity clear D % Run t-SNE mappedX = tsne_p(P, Y, 1000); ``` 这个函数调用了`d2p`函数和`tsne_p`函数。其中`d2p`函数的代码如下: ```matlab function P = d2p(D, perplexity, tol) %D2P Identifies appropriate sigma's to get kk NNs up to some tolerance % % P = d2p(D, perplexity, tol) % % Identifies the appropriate sigma to obtain a Gaussian kernel matrix with a % certain perplexity (approximately constant conditional entropy) for a % set of Euclidean input distances D. The desired perplexity is specified % by perplexity. The function returns the final Gaussian kernel matrix P, % whose elements P_{i,j} represent the probability of observing % datapoint j given datapoint i, normalized so that the sum over all i and j % is 1. % % The function iteratively searches for a value of sigma that results in a % Gaussian distribution over the perplexity-defined number of nearest % neighbors of each point. % % Note: The function is designed for use with the large data sets and % requires sufficient memory to store the entire NxN distance matrix for % your NxP data matrix X. % % Note: The function may return P=NaN, indicating numerical difficulties. % In such cases, the 'tol' parameter should be increased and the function % should be rerun. % % The function is based on earlier MATLAB code by Laurens van der Maaten % (lvdmaaten@gmail.com) and uses ideas from the following paper: % % * D. L. D. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised % learning of low dimensional manifolds. Journal of Machine Learning % Research 4(2003) 119-155. % % (C) Joshua V. Dillon, 2014 % Initialize some variables [n, ~] = size(D); % number of instances P = zeros(n, n); % empty probability matrix beta = ones(n, 1); % empty precision vector logU = log(perplexity); % log(perplexity) (H) % Compute P-values disp('Computing P-values...'); for i=1:n if mod(i, 500) == 0 disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']); end % Compute the Gaussian kernel and entropy for the current precision [P(i,:), beta(i)] = gaussiandist(D(i,:), tol, beta(i), logU); end disp('Mean value of sigma: '); disp(mean(sqrt(1 ./ beta))); % Make sure P-values are symmetric P = (P + P') ./ (2 * n); % Zero any negative values P(P < 0) = 0; end %------------------------------------------------------------------------- function [P, beta] = gaussiandist(x, tol, beta, logU) %GAUSSIANDIST Computes the Gaussian kernel and entropy for a perplexity %defined by logU. % % [P, beta] = gaussiandist(x, tol, beta, logU) % % Returns the Gaussian kernel and entropy for a given perplexity, defined % by logU, for the NxD matrix X. The function iteratively searches for a % value of sigma that results in a Gaussian distribution over the % perplexity-defined number of nearest neighbors of each point. % % Note: The function is designed for use with the large data sets and % requires sufficient memory to store the NxN distance matrix. % % Note: The function may return P=NaN, indicating numerical difficulties. % In such cases, the 'tol' parameter should be increased and the function % should be rerun. % % The function is based on earlier MATLAB code by Laurens van der Maaten % (lvdmaaten@gmail.com) and uses ideas from the following paper: % % * D. L. D. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised % learning of low dimensional manifolds. Journal of Machine Learning % Research 4(2003) 119-155. % % (C) Joshua V. Dillon, 2014 % Initialize some variables [n, ~] = size(x); % number of instances P = zeros(1, n); % empty probability vector sumP = realmin; % minimum value to avoid log(0) K = 0; % number of nearest neighbors % Search for good sigma, iterating until we have the perplexity we want while abs(sumP - logU) > tol % Compute Gaussian kernel and entropy for current precision P = exp(-beta * x).^2; sumP = sum(P); H = log(sumP) + beta * sum(x .* P) / sumP; % Adjust beta according to the perplexity if isnan(H) beta = beta * 2; P = NaN(1, n); continue; end if H > logU betaNew = beta * 0.5; else betaNew = beta * 2; end % Update precision beta = betaNew; end % Return final Gaussian kernel row for this point P = P / sumP; end ``` 最后,`tsne_p`函数的代码如下: ```matlab function Y = tsne_p(P, labels, no_dims) %TSNE_P Performs symmetric t-SNE on affinity matrix P % % Y = tsne_p(P, labels, no_dims) % % The function performs symmetric t-SNE on pairwise similarity matrix P % to reduce its dimensionality to no_dims. The matrix P is assumed to be % symmetric, sum up to 1, and have zeros on its diagonal. % The labels parameter is an optional vector of labels that can be used to % color the resulting scatter plot. The function returns the two-dimensional % data points in Y. % The perplexity is the only parameter the user normally needs to adjust. % In most cases, a value between 5 and 50 works well. % % Note: This implementation uses the "fast" version of t-SNE. This should % run faster than the original version but may also have different numerical % properties. % % Note: The function is memory intensive; e.g. for N=5000, you will need % about 2GB of RAM. % % (C) Laurens van der Maaten, 2008 % University of California, San Diego if ~exist('labels', 'var') labels = []; end if ~exist('no_dims', 'var') || isempty(no_dims) no_dims = 2; end % First check whether we already have an initial solution if size(P, 1) ~= size(P, 2) error('Affinity matrix P should be square'); end if ~isempty(labels) && length(labels) ~= size(P, 1) error('Mismatch in number of labels and size of P'); end % Initialize variables n = size(P, 1); % number of instances momentum = 0.5; % initial momentum final_momentum = 0.8; % value to which momentum is changed mom_switch_iter = 250; % iteration at which momentum is changed stop_lying_iter = 100; % iteration at which lying about P-values is stopped max_iter = 1000; % maximum number of iterations epsilon = 500; % initial learning rate min_gain = .01; % minimum gain for delta-bar-delta % Initialize the solution Y = randn(n, no_dims); dY = zeros(n, no_dims); iY = zeros(n, no_dims); gains = ones(n, no_dims); % Compute P-values P = P ./ sum(P(:)); P = max(P, realmin); P = P * 4; % early exaggeration P = min(P, 1e-12); % Lie about the P-vals to find better local minima P = P ./ sum(P(:)); P = max(P, realmin); const = sum(P(:) .* log(P(:))); for iter = 1:max_iter % Compute pairwise affinities sum_Y = sum(Y .^ 2, 2); num = 1 ./ (1 + bsxfun(@plus, sum_Y, bsxfun(@plus, sum_Y', -2 * (Y * Y')))); num(1:n+1:end) = 0; Q = max(num ./ sum(num(:)), realmin); % Compute gradient PQ = P - Q; for i=1:n dY(i,:) = sum(bsxfun(@times, PQ(:,i), bsxfun(@minus, Y, Y(i,:))), 1); end % Perform the update if iter < stop_lying_iter momentum = min_gain * momentum + (1 - min_gain) * dY; else momentum = final_momentum; end gains = (gains + .2) .* (sign(dY) ~= sign(iY)) + ... (gains * .8) .* (sign(dY) == sign(iY)); gains(gains < min_gain) = min_gain; iY = momentum; dY = gains .* momentum; Y = Y + dY; Y = bsxfun(@minus, Y, mean(Y, 1)); % Compute current value of cost function if ~rem(iter, 10) C = const - sum(P(:) .* log(Q(:))); if ~isempty(labels) disp(['Iteration ' num2str(iter) ': error is ' num2str(C) ', norm of gradient is ' num2str(norm(dY))]); end end % Stop lying about P-values if iter == stop_lying_iter P = P ./ 4; end end % Return solution if iter == max_iter disp(['Maximum number of iterations reached (' num2str(max_iter) ')']); end if ~isempty(labels) figure, scatter(Y(:,1), Y(:,2), 9, labels, 'filled'); end end ```

翻译 To ascertain that the improvement of dipIQ is statistically significant, we carry out a two sample T-test (with a 95% confidence) between PLCC values obtained by different models on LIVE [86]. After comparing every possible pairs of OU-BIQA models, the results are summarized in Table V, where a symbol “1” means the row model performs signifi- cantly better than the column model, a symbol “0” means the opposite, and a symbol “-” indicates that the row and column models are statistically indistinguishable. It can be observed that dipIQ is statistically better than dipIQ∗, which is better than all previous OU-BIQA models.

为了确保 dipIQ 的改进在统计上具有显著性,我们在 LIVE 数据集 [86] 上对不同模型得到的 PLCC 值进行了双样本 T 检验(置信度为95%)。在比较了 OU-BIQA 模型的所有可能配对后,结果总结如表 V 所示。其中,“1”表示行模型显著优于列模型,“0”表示相反,而“-”表示行和列模型在统计上无法区分。可以观察到 dipIQ 在统计上优于 dipIQ∗,后者优于所有先前的 OU-BIQA 模型。
阅读全文

相关推荐

精简下面表达:Existing protein function prediction methods integrate PPI networks and multivariate bioinformatics data to improve the performance of function prediction. By combining multivariate information, the interactions between proteins become diverse. Different interactions’ functions in functional prediction are various. Combining multiple interactions simply between two proteins can effectively reduce the effect of false negatives and increase the number of predicted functions, but it can also increase the number of false positive functions, which contribute to nonobvious enhancement for the overall functional prediction performance. In this article, we have presented a framework for protein function prediction algorithms based on PPI network and semantic similarity with the addition of protein hierarchical functions to them. The framework relies on diverse clustering algorithms and the calculation of protein semantic similarity for protein function prediction. Classification and similarity calculations for protein pairs clustered by the functional feature are more accurate and reliable, allowing for the prediction of protein function at different functional levels from different proteomes, and giving biological applications greater flexibility.The method proposed in this paper performs well on protein data from wine yeast cells, but how well it matches other data remains to be verified. Yet until now, most unknown proteins have only been able to predict protein function by calculating similarities to their homologues. The predictions result of those unknown proteins without homologues are unstable because they are relatively isolated in the protein interaction network. It is difficult to find one protein with high similarity. In the framework proposed in this article, the number of features selected after clustering and the number of protein features selected for each functional layer has a significant impact on the accuracy of subsequent functional predictions. Therefore, when making feature selection, it is necessary to select as many functional features as possible that are important for the whole interaction network. When an incorrect feature was selected, the prediction results will be somewhat different from the actual function. Thus as a whole, the method proposed in this article has improved the accuracy of protein function prediction based on the PPI network method to a certain extent and reduces the probability of false positive prediction results.

用c++解决Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1 ≤ S ≤ N ≤ 100, 1 ≤ M ≤ 100, V is real number, 0 ≤ V ≤ 103. For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2 ≤ rate ≤ 102, 0 ≤ commission ≤ 102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO.

After reset, the Kryo Silver core 0 comes out of reset and then executes PBL On Kryo Silver core 0, applications PBL initializes hardware (clocks, and so on), CPU caches and MMU, and detects the boot device as per the boot option configuration:  Default boot option: UFS > SD > USB  Default boot option: overridden by EDL cookie or Force USB GPIO 2a. Loads and authenticates XBL-SEC (region #0) from the boot device to OCIMEM 2b. Loads and authenticates XBL-Loader (region #1) from the boot device to Boot IMEM 2c. Loads and authenticates XBL-Debug (region #2) from the boot device to OCIMEM Jumps to XBL-SEC 3. XBL-SEC runs the security configuration in EL3 mode, and then executes the XBL-Loader in EL1 mode XBL-Loader initializes hardware and firmware images, CPU caches, MMU, boot device, XBLConfig, PMIC driver, and DDR. It performs DDR training if applicable, executes an SCM call to XBL-SEC to initialize PIMEM, and initializes clocks and configures the clock frequencies as per clock plan 4a. Loads and authenticates applications debug policy (APDP) image from the boot device 4b. If, DLOAD cookie is set, loads, and authenticates XBL-RAM dump and jumps to XBL-RAM dump to collect crash dump 4c. Initializes SMEM (shared memory) and fills platform ID and RAM partition table 4d. Loads and authenticates AOP image from the boot device and then bring AOP out of reset 4e. Loads and authenticates DEVCFG (TZ device configuration) image from the boot device 4f. Loads SEC.dat (fuse blowing data) image from the boot storage if exists 4g. Loads and authenticates QTEE image from the boot device 4h. Loads and authenticates QHEE image from the boot device 4i. Loads and authenticates ABL image from the boot device 4j. Executes an SCM call to XBL-SEC to jump to QTEE cold boot是什么意思

最新推荐

recommend-type

java计算器源码.zip

java毕业设计源码,可供参考
recommend-type

PHP集成Autoprefixer让CSS自动添加供应商前缀

标题和描述中提到的知识点主要包括:Autoprefixer、CSS预处理器、Node.js 应用程序、PHP 集成以及开源。 首先,让我们来详细解析 Autoprefixer。 Autoprefixer 是一个流行的 CSS 预处理器工具,它能够自动将 CSS3 属性添加浏览器特定的前缀。开发者在编写样式表时,不再需要手动添加如 -webkit-, -moz-, -ms- 等前缀,因为 Autoprefixer 能够根据各种浏览器的使用情况以及官方的浏览器版本兼容性数据来添加相应的前缀。这样可以大大减少开发和维护的工作量,并保证样式在不同浏览器中的一致性。 Autoprefixer 的核心功能是读取 CSS 并分析 CSS 规则,找到需要添加前缀的属性。它依赖于浏览器的兼容性数据,这一数据通常来源于 Can I Use 网站。开发者可以通过配置文件来指定哪些浏览器版本需要支持,Autoprefixer 就会自动添加这些浏览器的前缀。 接下来,我们看看 PHP 与 Node.js 应用程序的集成。 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时环境,它使得 JavaScript 可以在服务器端运行。Node.js 的主要特点是高性能、异步事件驱动的架构,这使得它非常适合处理高并发的网络应用,比如实时通讯应用和 Web 应用。 而 PHP 是一种广泛用于服务器端编程的脚本语言,它的优势在于简单易学,且与 HTML 集成度高,非常适合快速开发动态网站和网页应用。 在一些项目中,开发者可能会根据需求,希望把 Node.js 和 PHP 集成在一起使用。比如,可能使用 Node.js 处理某些实时或者异步任务,同时又依赖 PHP 来处理后端的业务逻辑。要实现这种集成,通常需要借助一些工具或者中间件来桥接两者之间的通信。 在这个标题中提到的 "autoprefixer-php",可能是一个 PHP 库或工具,它的作用是把 Autoprefixer 功能集成到 PHP 环境中,从而使得在使用 PHP 开发的 Node.js 应用程序时,能够利用 Autoprefixer 自动处理 CSS 前缀的功能。 关于开源,它指的是一个项目或软件的源代码是开放的,允许任何个人或组织查看、修改和分发原始代码。开源项目的好处在于社区可以一起参与项目的改进和维护,这样可以加速创新和解决问题的速度,也有助于提高软件的可靠性和安全性。开源项目通常遵循特定的开源许可证,比如 MIT 许可证、GNU 通用公共许可证等。 最后,我们看到提到的文件名称 "autoprefixer-php-master"。这个文件名表明,该压缩包可能包含一个 PHP 项目或库的主分支的源代码。"master" 通常是源代码管理系统(如 Git)中默认的主要分支名称,它代表项目的稳定版本或开发的主线。 综上所述,我们可以得知,这个 "autoprefixer-php" 工具允许开发者在 PHP 环境中使用 Node.js 的 Autoprefixer 功能,自动为 CSS 规则添加浏览器特定的前缀,从而使得开发者可以更专注于内容的编写而不必担心浏览器兼容性问题。
recommend-type

揭秘数字音频编码的奥秘:非均匀量化A律13折线的全面解析

# 摘要 数字音频编码技术是现代音频处理和传输的基础,本文首先介绍数字音频编码的基础知识,然后深入探讨非均匀量化技术,特别是A律压缩技术的原理与实现。通过A律13折线模型的理论分析和实际应用,本文阐述了其在保证音频信号质量的同时,如何有效地降低数据传输和存储需求。此外,本文还对A律13折线的优化策略和未来发展趋势进行了展望,包括误差控制、算法健壮性的提升,以及与新兴音频技术融合的可能性。 # 关键字 数字音频编码;非均匀量化;A律压缩;13折线模型;编码与解码;音频信号质量优化 参考资源链接:[模拟信号数字化:A律13折线非均匀量化解析](https://wenku.csdn.net/do
recommend-type

arduino PAJ7620U2

### Arduino PAJ7620U2 手势传感器 教程 #### 示例代码与连接方法 对于Arduino开发PAJ7620U2手势识别传感器而言,在Arduino IDE中的项目—加载库—库管理里找到Paj7620并下载安装,完成后能在示例里找到“Gesture PAJ7620”,其中含有两个示例脚本分别用于9种和15种手势检测[^1]。 关于连线部分,仅需连接四根线至Arduino UNO开发板上的对应位置即可实现基本功能。具体来说,这四条线路分别为电源正极(VCC),接地(GND),串行时钟(SCL)以及串行数据(SDA)[^1]。 以下是基于上述描述的一个简单实例程序展示如
recommend-type

网站啄木鸟:深入分析SQL注入工具的效率与限制

网站啄木鸟是一个指的是一类可以自动扫描网站漏洞的软件工具。在这个文件提供的描述中,提到了网站啄木鸟在发现注入漏洞方面的功能,特别是在SQL注入方面。SQL注入是一种常见的攻击技术,攻击者通过在Web表单输入或直接在URL中输入恶意的SQL语句,来欺骗服务器执行非法的SQL命令。其主要目的是绕过认证,获取未授权的数据库访问权限,或者操纵数据库中的数据。 在这个文件中,所描述的网站啄木鸟工具在进行SQL注入攻击时,构造的攻击载荷是十分基础的,例如 "and 1=1--" 和 "and 1>1--" 等。这说明它的攻击能力可能相对有限。"and 1=1--" 是一个典型的SQL注入载荷示例,通过在查询语句的末尾添加这个表达式,如果服务器没有对SQL注入攻击进行适当的防护,这个表达式将导致查询返回真值,从而使得原本条件为假的查询条件变为真,攻击者便可以绕过安全检查。类似地,"and 1>1--" 则会检查其后的语句是否为假,如果查询条件为假,则后面的SQL代码执行时会被忽略,从而达到注入的目的。 描述中还提到网站啄木鸟在发现漏洞后,利用查询MS-sql和Oracle的user table来获取用户表名的能力不强。这表明该工具可能无法有效地探测数据库的结构信息或敏感数据,从而对数据库进行进一步的攻击。 关于实际测试结果的描述中,列出了8个不同的URL,它们是针对几个不同的Web应用漏洞扫描工具(Sqlmap、网站啄木鸟、SqliX)进行测试的结果。这些结果表明,针对提供的URL,Sqlmap和SqliX能够发现注入漏洞,而网站啄木鸟在多数情况下无法识别漏洞,这可能意味着它在漏洞检测的准确性和深度上不如其他工具。例如,Sqlmap在针对 "http://www.2cto.com/news.php?id=92" 和 "http://www.2cto.com/article.asp?ID=102&title=Fast food marketing for children is on the rise" 的URL上均能发现SQL注入漏洞,而网站啄木鸟则没有成功。这可能意味着网站啄木鸟的检测逻辑较为简单,对复杂或隐蔽的注入漏洞识别能力不足。 从这个描述中,我们也可以了解到,在Web安全测试中,工具的多样性选择是十分重要的。不同的安全工具可能对不同的漏洞和环境有不同的探测能力,因此在实际的漏洞扫描过程中,安全测试人员需要选择合适的工具组合,以尽可能地全面地检测出应用中存在的漏洞。 在标签中指明了这是关于“sql注入”的知识,这表明了文件主题的核心所在。SQL注入是一种常见的网络攻击方式,安全测试人员、开发人员和网络管理员都需要对此有所了解,以便进行有效的防御和检测。 最后,提到了压缩包子文件的文件名称列表,其中包含了三个文件:setup.exe、MD5.exe、说明_Readme.html。这里提供的信息有限,但可以推断setup.exe可能是一个安装程序,MD5.exe可能是一个计算文件MD5散列值的工具,而说明_Readme.html通常包含的是软件的使用说明或者版本信息等。这些文件名暗示了在进行网站安全测试时,可能涉及到安装相关的软件工具,以及进行文件的校验和阅读相应的使用说明。然而,这些内容与文件主要描述的web安全漏洞检测主题不是直接相关的。
recommend-type

【GPStoolbox使用技巧大全】:20个实用技巧助你精通GPS数据处理

# 摘要 GPStoolbox是一个广泛应用于GPS数据处理的软件工具箱,它提供了从数据导入、预处理、基本分析到高级应用和自动化脚本编写的全套功能。本文介绍了GPStoolbox的基本概况、安装流程以及核心功能,探讨了如何
recommend-type

spring boot怎么配置maven

### 如何在 Spring Boot 项目中正确配置 Maven #### pom.xml 文件设置 `pom.xml` 是 Maven 项目的核心配置文件,在 Spring Boot 中尤为重要,因为其不仅管理着所有的依赖关系还控制着项目的构建流程。对于 `pom.xml` 的基本结构而言,通常包含如下几个部分: - **Project Information**: 定义了关于项目的元数据,比如模型版本、组ID、工件ID和版本号等基本信息[^1]。 ```xml <project xmlns="http://maven.apache.org/POM/4.0.0
recommend-type

我的个人简历HTML模板解析与应用

根据提供的文件信息,我们可以推断出这些内容与一个名为“My Resume”的个人简历有关,并且这份简历使用了HTML技术来构建。以下是从标题、描述、标签以及文件名称列表中提取出的相关知识点。 ### 标题:“my_resume:我的简历” #### 知识点: 1. **个人简历的重要性:** 简历是个人求职、晋升、转行等职业发展活动中不可或缺的文件,它概述了个人的教育背景、工作经验、技能及成就等关键信息,供雇主或相关人士了解求职者资质。 2. **简历制作的要点:** 制作简历时,应注重排版清晰、逻辑性强、突出重点。使用恰当的标题和小标题,合理分配版面空间,并确保内容的真实性和准确性。 ### 描述:“我的简历” #### 知识点: 1. **简历个性化:** 描述中的“我的简历”强调了个性化的重要性。每份简历都应当根据求职者的具体情况和目标岗位要求定制,确保简历内容与申请职位紧密相关。 2. **内容的针对性:** 描述表明简历应具有针对性,即在不同的求职场合下可能需要不同的简历版本,以突出与职位最相关的信息。 ### 标签:“HTML” #### 知识点: 1. **HTML基础:** HTML(HyperText Markup Language)是构建网页的标准标记语言。它定义了网页内容的结构,通过标签(tag)对信息进行组织,如段落(<p>)、标题(<h1>至<h6>)、图片(<img>)、链接(<a>)等。 2. **简历的在线呈现:** 使用HTML创建在线简历,可以让求职者以网页的形式展示自己。这种方式除了文字信息外,还可以嵌入多媒体元素,如视频、图表,增强简历的表现力。 3. **简历的响应式设计:** 随着移动设备的普及,确保简历在不同设备上(如PC、平板、手机)均能良好展示变得尤为重要。利用HTML结合CSS和JavaScript,可以创建适应不同屏幕尺寸的响应式简历。 4. **SEO(搜索引擎优化):** 使用HTML时,合理使用元标签(meta tags)如<meta name="description">可以帮助简历在搜索引擎中获得更好的可见性,从而增加被潜在雇主发现的机会。 ### 压缩包子文件的文件名称列表:“my_resume-main” #### 知识点: 1. **项目组织结构:** 文件名称列表中的“my_resume-main”暗示了一个可能的项目结构。在这个结构中,“main”可能指的是这个文件是主文件,例如HTML文件可能是整个简历网站的入口。 2. **压缩和部署:** “压缩包子文件”可能是指将多个文件打包成一个压缩包。在前端开发中,通常会将HTML、CSS、JavaScript等源文件压缩后上传到服务器上。压缩通常可以减少文件大小,加快加载速度。 3. **文件命名规则:** 从文件命名可以推断出命名习惯,这通常是开发人员约定俗成的,有助于维护代码的整洁和可读性。例如,“my_resume”很直观地表示了这个文件是关于“我的简历”的内容。 综上所述,这些信息点不仅提供了关于个人简历的重要性和制作要点,而且还涵盖了使用HTML制作简历的各个方面,包括页面结构设计、元素应用、响应式设计以及文件组织和管理等。针对想要制作个人简历的用户,这些知识点提供了相当丰富的信息,以帮助他们更好地创建和优化自己的在线简历。
recommend-type

3GPP架构深度解析:掌握网络功能与服务框架的关键

# 摘要 本文详细介绍了3GPP架构及其核心网络功能、无线接入网络和网络服务框架,强调了其在当代通信网络中的重要性和技术演进。文中深入探讨了3GPP核心网络在用户数据管理、控制平面与用户平面分离、服务连续性及网络切片技术等方面的核心功能和协议架构。进一步分析了无线接入网络的接口协议栈、空中接口信令和数据传输机制以及无线资源管理的策略。在网络服务框架部分,重点讨论了网络功能虚拟化(NFV)、软件定义网络(SDN)的架构
recommend-type

Failed to restart vntoolsd.service: Unit vntoolsd.service not found.

### 解决 `vntoolsd.service` 未找到导致的服务重启失败问题 对于 Arch Linux 中遇到的 `vntoolsd.service` 服务重启失败的情况,可以按照以下方法排查并解决问题。 #### 检查服务名称准确性 确认命令中的服务名是否正确。通常情况下应为 `vmtoolsd.service` 而不是 `vntoolsd.service`[^1]。 ```bash sudo systemctl status vmtoolsd.service ``` 此命令用于查看 `vmtoolsd.service` 的状态,如果显示该服务不存在,则可能是拼写错误所致。