for iris_type in iris_types: plt.scatter(data[x_axis][data['class'] == iris_type], data[y_axis][data['class'] == iris_type], label=iris_type)
时间: 2024-04-28 09:22:32 浏览: 23
这段代码是用来绘制鸢尾花数据集中两个特征的散点图,其中 `iris_types` 是一个包含鸢尾花三个类别的列表,`data` 是一个包含鸢尾花数据集的 Pandas DataFrame,`x_axis` 和 `y_axis` 分别表示用于绘制 x 轴和 y 轴的特征名称。这段代码会循环遍历 `iris_types` 列表中的每个鸢尾花类别,然后在散点图上绘制该类别的数据点,其中 `data['class'] == iris_type` 是用来选取该类别数据的布尔索引。`label` 参数用于指定每个类别在图例中显示的标签。
相关问题
data = iris_data.data X = [x[0] for x in data] Y = [x[1] for x in data] # plt.scatter(X, Y, c=iris_data.target, marker='x')
这段代码的作用是从一个名为iris_data的数据中取出数据,并创建两个新的列表X和Y。X列表中的元素是iris_data中data列表中每个子列表的第0个元素,Y列表中的元素是iris_data中data列表中每个子列表的第1个元素。
import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.datasets import load_iris from sklearn import preprocessing import matplotlib.pyplot as plt from pylab import mpl from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False np.random.seed(5) iris = load_iris() X = iris.data y = iris.target min_max_scaler = preprocessing.MinMaxScaler() X_minmax = min_max_scaler.fit_transform(X) batch_size = 15 num_cluster = 3 clf = MiniBatchKMeans(n_clusters=num_cluster, batch_size=batch_size, init='random') clf.fit(X_minmax) centers = clf.cluster_centers_ pre_clu = clf.labels_ vmarker = {0: '^', 1: 's', 2: 'D', } mValue = [vmarker[i] for i in pre_clu] for _marker, _x, _y in zip(mValue, X_minmax[:, 1], X_minmax[:, 2]): plt.scatter(_x, _y, marker=_marker,c='grey') plt.scatter(centers[:, 1], centers[:, 2], marker='*',s=200,c='black') plt.show() #手肘法则最佳k值 def sse_k(): K = range(1, 10) sse_result = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) sse_result.append(sum(np.min(cdist(iris.data, kmeans.cluster_centers_, 'euclidean'), axis=1)) / iris.data.shape[0]) plt.plot(K, sse_result, 'gx-') plt.xlabel('k') plt.ylabel(u'平均畸变程度') plt.title(u'肘部法则确定最佳的K值') plt.show() # 轮廓系统法最佳k值 def sc_k(): K = range(2, 10) score = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) score.append(silhouette_score(iris.data, kmeans.labels_, metric='euclidean')) plt.plot(K, score, 'r*-') plt.xlabel('k') plt.ylabel(u'轮廓系数') plt.title(u'轮廓系数确定最佳的K值') plt.show() sse_k() sc_k()
这段代码实现了对 iris 数据集进行聚类分析的功能。具体来说,它使用了 MiniBatchKMeans 算法对 iris 数据进行聚类,并使用了肘部法则和轮廓系数法来确定最佳的聚类数量 k。
首先,代码将 iris 数据集导入,然后进行了归一化处理。接着,使用 MiniBatchKMeans 算法对归一化后的数据进行聚类,得到聚类中心和每个数据点所属的聚类类别。最后,使用 matplotlib 绘制聚类散点图,其中每个数据点的颜色、形状表示它所属的聚类类别,聚类中心用星号标出。
在绘制完聚类散点图之后,代码使用肘部法则和轮廓系数法来确定最佳的聚类数量 k。具体来说,肘部法则使用 SSE(Sum of Squared Error)来度量聚类的有效性,它的基本思想是随着聚类数量 k 的增加,SSE 会逐渐减小,但当 k 增加到一定程度时,SSE 的下降速度会明显放缓,这个拐点就是肘部,对应的 k 值就是最佳的聚类数量。轮廓系数法则使用轮廓系数来度量聚类的有效性,它的基本思想是聚类效果越好,同一聚类类别内部的数据点越紧密,不同聚类类别之间的数据点越分散,因此轮廓系数的取值范围在 [-1, 1] 之间,越接近 1 表示聚类效果越好,对应的 k 值就是最佳的聚类数量。肘部法则和轮廓系数法都是常用的聚类分析方法。
总之,这段代码实现了对 iris 数据集进行聚类分析的功能,并使用了肘部法则和轮廓系数法来确定最佳的聚类数量 k。
阅读全文