基于拓扑优化ESO算法的悬臂梁优化的Python代码示例
时间: 2023-06-27 12:07:13 浏览: 156
以下是基于拓扑优化ESO算法的悬臂梁优化的Python代码示例:
```
import numpy as np
from scipy.sparse import coo_matrix
from scipy.sparse.linalg import spsolve
from numba import jit
# 定义悬臂梁的几何参数和材料属性
L = 1.0 # 悬臂梁长度
H = 0.2 # 悬臂梁高度
W = 0.01 # 悬臂梁宽度
E = 1e7 # 弹性模量
nu = 0.3 # 泊松比
rho = 2600 # 密度
g = 9.8 # 重力加速度
q = 10000 # 集中载荷
nelx = 60 # 横向单元数
nely = 12 # 纵向单元数
volfrac = 0.5 # 材料体积分数
penal = 3.0 # 材料惩罚系数
rmin = 3.0 # 最小半径
ft = 2 # 滤波类型,1:Sensitivity,2:Density
# 计算单元尺寸和网格尺寸
dx = L / nelx
dy = H / nely
n = (nelx + 1) * (nely + 1)
m = nelx * nely
# 构建节点和单元编号
inds = np.arange(n).reshape((nely+1, nelx+1))
elems = np.zeros((m, 4), dtype=int)
for ely in range(nely):
for elx in range(nelx):
elem = ely * nelx + elx
n1 = inds[ely, elx]
n2 = inds[ely, elx+1]
n3 = inds[ely+1, elx+1]
n4 = inds[ely+1, elx]
elems[elem] = [n1, n2, n3, n4]
# 初始化密度和位移场
rho0 = np.ones(m) * volfrac
x = np.ones(m) * volfrac
# 定义滤波器
def get_kernel(ft):
if ft == 1:
kernel = np.array([[0, 1, 0],
[1, 1, 1],
[0, 1, 0]])
elif ft == 2:
kernel = np.array([[0, 1, 0],
[1, 4, 1],
[0, 1, 0]])
else:
raise ValueError('Invalid filter type')
return kernel
kernel = get_kernel(ft)
# 定义有限元分析函数
@jit(nopython=True)
def fem(x, rho0, penal):
K = np.zeros((n, n))
f = np.zeros(n)
for elem in range(m):
n1, n2, n3, n4 = elems[elem]
x1, y1 = n1 % (nelx+1), n1 // (nelx+1)
x2, y2 = n2 % (nelx+1), n2 // (nelx+1)
x3, y3 = n3 % (nelx+1), n3 // (nelx+1)
x4, y4 = n4 % (nelx+1), n4 // (nelx+1)
X = np.array([[x1, x2, x3, x4],
[y1, y2, y3, y4]])
B = np.array([[-1, 1, 0, 0],
[0, 0, 1, -1],
[1, -1, -1, 1],
[0, 0, -1, 1],
[-1, 0, 1, 0],
[0, -1, 0, 1]])
D = E / (1 - nu**2) * np.array([[1, nu, 0],
[nu, 1, 0],
[0, 0, (1 - nu) / 2]])
detX = np.linalg.det(X)
invX = np.linalg.inv(X)
Bhat = np.dot(invX.T, B)
Ke = np.dot(np.dot(Bhat.T, D), Bhat) * detX * x[elem]**penal
K[n1, n1] += Ke[0, 0]
K[n1, n2] += Ke[0, 1]
K[n1, n3] += Ke[0, 2]
K[n1, n4] += Ke[0, 3]
K[n2, n1] += Ke[1, 0]
K[n2, n2] += Ke[1, 1]
K[n2, n3] += Ke[1, 2]
K[n2, n4] += Ke[1, 3]
K[n3, n1] += Ke[2, 0]
K[n3, n2] += Ke[2, 1]
K[n3, n3] += Ke[2, 2]
K[n3, n4] += Ke[2, 3]
K[n4, n1] += Ke[3, 0]
K[n4, n2] += Ke[3, 1]
K[n4, n3] += Ke[3, 2]
K[n4, n4] += Ke[3, 3]
f[elem] = rho0[elem] * g * detX * x[elem]
fixed_nodes = np.where((inds == 0) | (inds == nelx))[0]
free_nodes = np.setdiff1d(np.arange(n), fixed_nodes)
Kff = K[free_nodes][:, free_nodes]
Kfc = K[free_nodes][:, fixed_nodes]
u = np.zeros(n)
uf = spsolve(Kff, -Kfc.dot(u[fixed_nodes]))
u[free_nodes] = uf
s = np.dot(K, u) - f
return u, s
# 定义灵敏度分析函数
@jit(nopython=True)
def sensitivity(x, rho0, penal):
dc = np.zeros(m)
for elem in range(m):
n1, n2, n3, n4 = elems[elem]
x1, y1 = n1 % (nelx+1), n1 // (nelx+1)
x2, y2 = n2 % (nelx+1), n2 // (nelx+1)
x3, y3 = n3 % (nelx+1), n3 // (nelx+1)
x4, y4 = n4 % (nelx+1), n4 // (nelx+1)
X = np.array([[x1, x2, x3, x4],
[y1, y2, y3, y4]])
B = np.array([[-1, 1, 0, 0],
[0, 0, 1, -1],
[1, -1, -1, 1],
[0, 0, -1, 1],
[-1, 0, 1, 0],
[0, -1, 0, 1]])
D = E / (1 - nu**2) * np.array([[1, nu, 0],
[nu, 1, 0],
[0, 0, (1 - nu) / 2]])
detX = np.linalg.det(X)
invX = np.linalg.inv(X)
Bhat = np.dot(invX.T, B)
Ke = np.dot(np.dot(Bhat.T, D), Bhat) * detX * x[elem]**penal
s = np.dot(Ke, u[[n1, n2, n3, n4]])
dc[elem] = -rho0[elem] * x[elem]**(penal-1) * s
return dc
# 定义拓扑优化函数
def topo_opt(rho0, x, volfrac, rmin, penal):
loop = 0
change = 1
while change > 0.01 and loop < 200:
# 有限元分析
u, s = fem(x, rho0, penal)
# 灵敏度分析
dc = sensitivity(x, rho0, penal)
# 计算滤波后的灵敏度
if ft == 1:
dc[:] = np.dot(kernel, dc) / np.sum(kernel)
elif ft == 2:
kernel *= np.nanmax(dc) / np.sum(dc)
dc[:] = np.dot(kernel, dc)
# 计算移动限制
rho = np.maximum(0, np.minimum(rho0 + 0.05, np.maximum(0, x - 0.05)))
# 计算更新步长
l1 = 0
l2 = 1e9
while l2 - l1 > 1e-4:
lmid = 0.5 * (l2 + l1)
xnew = np.maximum(0, np.maximum(x - lmid * dc, rho))
if np.sum(xnew) - volfrac * m > 0:
l1 = lmid
else:
l2 = lmid
change = np.max(np.abs(x - xnew))
x = xnew
loop += 1
return x
# 进行拓扑优化
x = topo_opt(rho0, x, volfrac, rmin, penal)
# 输出结果
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
for elem in range(m):
n1, n2, n3, n4 = elems[elem]
x1, y1 = n1 % (nelx+1), n1 // (nelx+1)
x2, y2 = n2 % (nelx+1), n2 // (nelx+1)
x3, y3 = n3 % (nelx+1), n3 // (nelx+1)
x4, y4 = n4 % (nelx+1), n4 // (nelx+1)
if x[elem] > 0.5:
ax.fill([x1*dx, x2*dx, x3*dx, x4*dx], [H-y1*dy, H-y2*dy, H-y3*dy, H-y4*dy], 'k')
else:
ax.fill([x1*dx, x2*dx, x3*dx, x4*dx], [H-y1*dy, H-y2*dy, H-y3*dy, H-y4*dy], 'w')
ax.set_xlim(0, L)
ax.set_ylim(0, H)
ax.set_aspect('equal', 'box')
plt.show()
```
该代码使用了NumPy、SciPy和Numba库,可以通过pip安装。在运行前需要安装这些库,并将代码保存为.py文件,然后在命令行中运行python file.py即可。代码中已经调整了一些参数,可以根据实际需求进行修改。
阅读全文