利用拓扑优化ESO算法进行悬臂梁的优化代码示例以及给出简化图
时间: 2023-06-30 21:02:51 浏览: 202
以下是一个基于拓扑优化ESO算法的悬臂梁优化的代码示例:
```python
import numpy as np
from scipy.sparse import lil_matrix
from scipy.sparse.linalg import spsolve
# 定义常数
E = 1 # 弹性模量
nu = 0.3 # 泊松比
rho = 1 # 密度
l = 1 # 梁长度
w = 0.1 # 梁宽度
h = 0.1 # 梁高度
p = -1 # 外载荷
# 定义初始布局
n_elx, n_ely = 60, 10 # 元素个数
nel = n_elx * n_ely # 总元素数
nnx, nny = n_elx + 1, n_ely + 1 # 节点数
nn = nnx * nny # 总节点数
ndof = 2 # 自由度个数
nnp = nn * ndof # 总自由度个数
x = np.zeros(nnp)
# 定义初始密度分布
volfrac = 0.5 # 初始密度
x[:nnp//2] = volfrac
# 定义有限元模型
KE = np.array([[12, 3, -6, -3], [3, 12, 3, -6], [-6, 3, 12, -3], [-3, -6, -3, 12]]) / (12 * (1 - nu ** 2) * h * w)
KE1 = np.array([[-6, -3, 6, -3], [-3, 0, 3, 0], [6, 3, -6, 3], [-3, 0, 3, 0]]) / (2 * l)
KE2 = np.array([[12, -6, 3, -12], [-6, 4, -2, 6], [3, -2, 4, -3], [-12, 6, -3, 12]]) * E * h ** 3 / (12 * (1 - nu ** 2) * l ** 3)
edofMat = np.zeros((nel, 8), dtype=int)
for ely in range(n_ely):
for elx in range(n_elx):
el = ely * n_elx + elx
n1 = (n_elx + 1) * ely + elx
n2 = (n_elx + 1) * (ely + 1) + elx
edofMat[el] = np.array([2 * n1, 2 * n1 + 1, 2 * n2, 2 * n2 + 1, 2 * (n1 + 1), 2 * (n1 + 1) + 1, 2 * (n2 + 1), 2 * (n2 + 1) + 1])
# 定义ESO算法
def ElementStiffness(x):
# 计算元素刚度矩阵
penal = 3
KE_penalty = penal * x ** (penal - 1) * KE
return KE_penalty
def ElementMass(x):
# 计算元素质量矩阵
rho_penalty = rho * x ** penal
return rho_penalty * KE2
def ComputeK(x):
# 计算总刚度矩阵
K = lil_matrix((nnp, nnp))
for el in range(nel):
edof = edofMat[el]
KE_penalty = ElementStiffness(x[edof[:4]])
K[np.ix_(edof[:4], edof[:4])] += KE_penalty
K[np.ix_(edof[:4], edof[4:])] -= KE1
K[np.ix_(edof[4:], edof[:4])] -= KE1.T
ME_penalty = ElementMass(x[edof[:4]])
K[np.ix_(edof[:4], edof[:4])] += ME_penalty
return K
def ESO(x, Emin=1e-9, Emax=1e9, rho_min=0.001, rho_max=1, beta=1):
# 进行ESO优化
loop = 0
change = 1
while change > 0.01 and loop < 100:
loop += 1
x_old = x.copy()
K = ComputeK(x)
U = spsolve(K, p)
for el in range(nel):
edof = edofMat[el]
x[edof[:4]] = max(Emin, min(Emax, x[edof[:4]] + beta * (p @ U[edof[:4]]) / (KE @ U[edof[:4]])))
x = np.minimum(np.maximum(x, rho_min), rho_max)
change = np.linalg.norm(x - x_old, np.inf)
return x
# 进行优化
x_opt = ESO(x)
# 绘制简化图
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
fig, ax = plt.subplots()
for ely in range(n_ely):
for elx in range(n_elx):
el = ely * n_elx + elx
xc = (elx + 0.5) / n_elx
yc = (ely + 0.5) / n_ely
if x_opt[edofMat[el, :4]].sum() / 4 > 1e-4:
ax.add_patch(Rectangle((xc - 0.5 / n_elx, yc - 0.5 / n_ely), 1 / n_elx, 1 / n_ely, facecolor='black'))
else:
ax.add_patch(Rectangle((xc - 0.5 / n_elx, yc - 0.5 / n_ely), 1 / n_elx, 1 / n_ely, facecolor='white'))
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_aspect('equal')
plt.show()
```
下面是一个简化的悬臂梁示意图,其中黑色矩形表示材料存在的区域,白色矩形表示空洞区域。
![简化图](https://i.imgur.com/1Zz9Jbk.png)
阅读全文