my_nn = torch.nn.Sequential
时间: 2024-09-10 08:26:23 浏览: 78
`torch.nn.Sequential` 是 PyTorch 模块中的一个容器,它允许你按顺序串联多个 `nn.Module` 对象(如线性层、卷积层等),形成一个简单的神经网络模型。它的工作原理类似于构建函数(Sequential Function),每一层都会依次应用到前一层的输出结果上,最终生成整个模型的输出。
例如,如果你想要创建一个包含两个全连接层的简单神经网络,可以这样做:
```python
my_nn = torch.nn.Sequential(
nn.Linear(784, 128), # 第一个全连接层,输入大小为 784(例如图片像素)
nn.ReLU(), # 使用 ReLU 激活函数
nn.Linear(128, 64), # 第二个全连接层,隐藏层大小为 64
nn.ReLU(),
nn.Linear(64, 10) # 输出层,对应于分类任务的类别数(假设是10个类别)
)
```
在这个结构中,数据首先通过第一个线性层,然后通过ReLU激活函数,再传递给第二个线性层,如此反复,直到最后一层输出网络的预测结果。
相关问题
features_list = list(vgg19.features.children()) self.conv2_2 = torch.nn.Sequential(*features_list[:13]) self.conv3_4 = torch.nn.Sequential(*features_list[13:26]) self.conv4_4 = torch.nn.Sequential(*features_list[26: 39]) self.conv5_4 = torch.nn.Sequential(*features_list[39:-1]) self.tail_layer = features_list[-1] self.fc_layers = list(vgg19.classifier.children())[:-2] self.fc_layers = torch.nn.Sequential(*list(self.fc_layers)) self.extract_0 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1) ) self.extract_1 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1) )self.extract_2 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.extract_3 = torch.nn.Sequential( torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.fc0 = torch.nn.Linear(196, 1, bias=True) self.fc1 = torch.nn.Linear(196, 1, bias=True) self.fc2 = torch.nn.Linear(196, 1, bias=True) self.fc3 = torch.nn.Linear(196, 1, bias=True) self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True) self.bn1 = torch.nn.BatchNorm1d(k) self.bn2 = torch.nn.BatchNorm1d(k) weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)
这段代码定义了一个名为 VGG19Encoder 的神经网络模型。它使用了预训练的 VGG19 模型的前四个卷积层和最后一个全连接层作为特征提取器,其中前四个卷积层被分别用于提取不同层级的特征。然后,通过几个额外的卷积层和全连接层将提取的特征转换为对输入图像中物体类别的预测。其中,提取的特征被分别送入四个全连接层中进行分类。
具体来说,代码中的各个部分的功能如下:
- `features_list = list(vgg19.features.children())`:获取 VGG19 模型的所有卷积层。
- `self.conv2_2 = torch.nn.Sequential(*features_list[:13])`:将前 13 层卷积层作为 conv2_2 层。
- `self.conv3_4 = torch.nn.Sequential(*features_list[13:26])`:将第 14 层到第 26 层卷积层作为 conv3_4 层。
- `self.conv4_4 = torch.nn.Sequential(*features_list[26: 39])`:将第 27 层到第 39 层卷积层作为 conv4_4 层。
- `self.conv5_4 = torch.nn.Sequential(*features_list[39:-1])`:将第 40 层到倒数第二层卷积层作为 conv5_4 层。
- `self.tail_layer = features_list[-1]`:将最后一层卷积层作为尾部层。
- `self.fc_layers = list(vgg19.classifier.children())[:-2]`:获取 VGG19 模型的所有全连接层,但不包括最后两层。
- `self.fc_layers = torch.nn.Sequential(*list(self.fc_layers))`:将所有全连接层组成一个新的连续的全连接层。
- `self.extract_0 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1))`:将 conv2_2 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_1 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1))`:将 conv3_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_2 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv4_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_3 = torch.nn.Sequential(torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv5_4 层的输出进行卷积操作,以提取更高级别的特征。
- `self.fc0 = torch.nn.Linear(196, 1, bias=True)`:定义一个输入为 196 的全连接层,用于分类。
- `self.fc1 = torch.nn.Linear(196, 1, bias=True)`:定义第二个输入为 196 的全连接层,用于分类。
- `self.fc2 = torch.nn.Linear(196, 1, bias=True)`:定义第三个输入为 196 的全连接层,用于分类。
- `self.fc3 = torch.nn.Linear(196, 1, bias=True)`:定义第四个输入为 196 的全连接层,用于分类。
- `self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True)`:定义一个输入为 4096 的全连接层,用于分类。
- `self.bn1 = torch.nn.BatchNorm1d(k)`:定义一个 Batch Normalization 层,用于归一化数据。
- `self.bn2 = torch.nn.BatchNorm1d(k)`:定义第二个 Batch Normalization 层,用于归一化数据。
- `weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)`:对所有全连接层进行权重初始化,以提高模型的性能。
解释class Bottlrneck(torch.nn.Module): def __init__(self,In_channel,Med_channel,Out_channel,downsample=False): super(Bottlrneck, self).__init__() self.stride = 1 if downsample == True: self.stride = 2 self.layer = torch.nn.Sequential( torch.nn.Conv1d(In_channel, Med_channel, 1, self.stride), torch.nn.BatchNorm1d(Med_channel), torch.nn.ReLU(), torch.nn.Conv1d(Med_channel, Med_channel, 3, padding=1), torch.nn.BatchNorm1d(Med_channel), torch.nn.ReLU(), torch.nn.Conv1d(Med_channel, Out_channel, 1), torch.nn.BatchNorm1d(Out_channel), torch.nn.ReLU(), ) if In_channel != Out_channel: self.res_layer = torch.nn.Conv1d(In_channel, Out_channel,1,self.stride) else: self.res_layer = None def forward(self,x): if self.res_layer is not None: residual = self.res_layer(x) else: residual = x return self.layer(x)+residual
这是一个使用 1x1、3x3、1x1 卷积核的瓶颈块(Bottleneck Block)。它的作用是减少参数数量并增加网络深度,同时减少梯度消失问题。具体来说,它的结构如下:
- 输入 In_channel 经过一个 1x1 的卷积核,输出通道数变为 Med_channel。
- 经过 Batch Normalization 和 ReLU 激活函数。
- 再经过一个 3x3 的卷积核,输出通道数还是 Med_channel。
- 经过 Batch Normalization 和 ReLU 激活函数。
- 最后经过一个 1x1 的卷积核,输出通道数变为 Out_channel。
- 经过 Batch Normalization 和 ReLU 激活函数。
如果 downsample 设置为 True,表示需要对输入进行下采样,此时会在第一个 1x1 卷积层后加一个步长为 2 的卷积操作。
同时,为了保证输入输出通道数相同,如果 In_channel 不等于 Out_channel,则会在最后加上一个 1x1 的卷积层将输入通道数转化为输出通道数,否则不需要进行这样的操作。
forward 函数中,首先判断是否需要进行输入通道数与输出通道数的转换,然后将输入 x 经过瓶颈块的处理得到的结果与 residual 相加作为最终输出。其中 residual 表示输入 x 经过最后的 1x1 卷积层得到的结果。
阅读全文