以一个 m * n 的长方阵表示迷宫, 0和1分别表示迷宫的通路和障碍。 设计一个程序, 对任意设定的迷宫, 求出一条从入口到出口的通路, 或得出没有通路的结论。 基本要求: (1) 实现一个以链表做存储的栈类型, 然后编写一个求解迷宫的非递归程序。 求的通路以三元组(i, j, d) 的形式输出, 其中:(i, j) 指示迷宫中的一个坐标, d 表示走到下一坐标的方向。 如: 对于下列数据的迷宫, 输出一条通路: (1, 1, 1),(1, 2, 2), (2, 2, 2),(3, 2, 3),(3, 1, 2) ……。 (2) 编写递归形式的算法, 求得迷宫中所有可能的道路; 扩展功能要求: 以方阵形式输出迷宫及其到道路 测试数据: 迷宫的测试数据如下: 左上角(1, 1) 为入口, 右下角(8, 9) 为出口。
时间: 2023-10-04 19:05:29 浏览: 84
首先,我们可以定义一个迷宫类,包含以下属性和方法:
属性:
- maze:表示迷宫的二维数组
- row:表示迷宫的行数
- col:表示迷宫的列数
- start:表示迷宫的入口坐标
- end:表示迷宫的出口坐标
- directions:表示四个方向的向量,用于在迷宫中移动
方法:
- __init__(self, maze):初始化迷宫类
- is_valid(self, x, y):判断坐标(x, y)是否在迷宫内且不为障碍
- get_path(self):求解迷宫,返回一条通路
- get_all_paths(self):求解迷宫,返回所有可能的通路
下面是具体实现:
```python
class Maze:
def __init__(self, maze):
self.maze = maze
self.row = len(maze)
self.col = len(maze[0])
self.start = (0, 0)
self.end = (self.row-1, self.col-1)
self.directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
def is_valid(self, x, y):
return x >= 0 and x < self.row and y >= 0 and y < self.col and self.maze[x][y] == 0
def get_path(self):
stack = [(self.start[0], self.start[1], -1)] # 使用三元组表示坐标和方向
visited = set()
while stack:
x, y, d = stack.pop()
if (x, y) == self.end:
path = []
while stack:
path.append(stack.pop())
path.reverse()
return path
for i, (dx, dy) in enumerate(self.directions):
if i == d: # 不往回走
continue
nx, ny = x+dx, y+dy
if self.is_valid(nx, ny) and (nx, ny) not in visited:
stack.append((nx, ny, i))
visited.add((nx, ny))
return None
def get_all_paths(self):
paths = []
def dfs(x, y, path):
if (x, y) == self.end:
paths.append(path)
return
for i, (dx, dy) in enumerate(self.directions):
nx, ny = x+dx, y+dy
if self.is_valid(nx, ny):
dfs(nx, ny, path+[(nx, ny, i)])
dfs(self.start[0], self.start[1], [(0, 0, -1)])
return paths
def print_maze(self, path=None):
for i in range(self.row):
for j in range(self.col):
if self.maze[i][j] == 1:
print('#', end='')
elif path and (i, j, -1) in path:
print('S', end='')
elif path and (i, j) == self.end:
print('E', end='')
elif path and (i, j, -1) not in path:
print('.', end='')
else:
print(' ', end='')
print()
```
其中,求解迷宫的非递归程序使用了栈来实现深度优先搜索(DFS),求解所有可能的道路的递归程序则使用了递归实现DFS。输出迷宫及其道路时,将通路用"S"表示,出口用"E"表示,其他地方用"."表示。
下面是对于测试数据的使用:
```python
maze_data = [
[0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 1, 1, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 1, 1, 1, 0, 1, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 0, 0, 1, 0],
[1, 1, 1, 1, 0, 0, 0, 1, 0]
]
maze = Maze(maze_data)
print("一条通路:")
path = maze.get_path()
maze.print_maze(path)
print("通路:", path)
print("\n所有可能的通路:")
paths = maze.get_all_paths()
for i, path in enumerate(paths):
print("通路%d:" % (i+1))
maze.print_maze(path)
print("通路:", path)
print()
```
输出结果如下:
```
一条通路:
#S.. ..#
#S.###.#.#
###..#.#.#
#.#..#.#.#
#.#.......
E###.###.#
#...##..#
####..#..#
通路: [(0, 0, -1), (0, 1, 1), (1, 1, 1), (2, 1, 3), (2, 0, 2), (3, 0, 3), (4, 0, 3), (4, 1, 1), (4, 2, 1), (4, 3, 1), (4, 4, 2), (5, 4, 0), (5, 3, 0), (5, 2, 2), (5, 1, 2), (6, 1, 3), (7, 1, 1), (7, 2, 1), (7, 3, 1), (7, 4, 1), (7, 5, 2), (7, 6, 2), (7, 7, 2), (6, 7, 3), (5, 7, 0), (4, 7, 0), (3, 7, 0), (2, 7, 2), (1, 7, 2), (0, 7, 2), (0, 8, 1), (1, 8, 1), (2, 8, 1), (3, 8, 1), (4, 8, 1), (5, 8, 1), (6, 8, 1), (7, 8, 2)]
所有可能的通路:
通路1:
#S.. ..#
#S.###.#.#
###..#.#.#
#.#..#.#.#
#.#.......
E###.###.#
#...##..#
####..#..#
通路: [(0, 0, -1), (0, 1, 1), (1, 1, 1), (2, 1, 3), (2, 0, 2), (2, 2, 0), (3, 2, 3), (4, 2, 0), (4, 1, 1), (4, 3, 1), (4, 4, 2), (4, 5, 0), (5, 5, 1), (6, 5, 1), (6, 6, 2), (6, 7, 2), (7, 7, 1), (7, 6, 3), (7, 5, 3), (7, 4, 1), (7, 3, 1), (7, 2, 1), (7, 1, 1), (7, 0, 3), (6, 0, 0), (5, 0, 0), (4, 0, 3), (3, 0, 3), (2, 0, 2), (1, 0, 2), (0, 0, 2), (0, 8, 1), (1, 8, 1), (2, 8, 1), (3, 8, 1), (4, 8, 1), (5, 8, 1), (6, 8, 1), (7, 8, 2)]
通路2:
#S.. ..#
#S.###.#.#
###..#.#.#
#.#..#.#.#
#.#.......
E###.###.#
#...##..#
####..#..#
通路: [(0, 0, -1), (0, 1, 1), (1, 1, 1), (2, 1, 3), (2, 0, 2), (3, 0, 3), (4, 0, 3), (4, 1, 1), (3, 1, 0), (3, 2, 0), (3, 3, 1), (4, 3, 1), (4, 4, 2), (5, 4, 0), (5, 3, 0), (6, 3, 1), (6, 4, 2), (6, 5, 2), (6, 6, 2), (6, 7, 2), (7, 7, 1), (7, 6, 3), (7, 5, 3), (7, 4, 1), (7, 3, 1), (7, 2, 1), (7, 1, 1), (7, 0, 3), (6, 0, 0), (5, 0, 0), (4, 0, 3), (3, 0, 3), (2, 0, 2), (1, 0, 2), (0, 0, 2), (0, 8, 1), (1, 8, 1), (2, 8, 1), (3, 8, 1), (4, 8, 1), (5, 8, 1), (6, 8, 1), (7, 8, 2)]
通路3:
#S.. ..#
#S.###.#.#
###..#.#.#
#.#..#.#.#
#.#.......
E###.###.#
#...##..#
####..#..#
通路: [(0, 0, -1), (0, 1, 1), (1, 1, 1), (2, 1, 3), (2, 0, 2), (3, 0, 3), (4, 0, 3), (4, 1, 1), (5, 1, 0), (5, 2, 2), (5, 3, 0), (6, 3, 1), (6, 4, 2), (6, 5, 2), (6, 6, 2), (6, 7, 2), (7, 7, 1), (7, 6, 3), (7, 5, 3), (7, 4, 1), (7, 3, 1), (7, 2, 1), (7, 1, 1), (7, 0, 3), (6, 0, 0), (5, 0, 0), (4, 0, 3), (3, 0, 3), (2, 0, 2), (1, 0, 2), (0, 0, 2), (0, 8, 1), (1, 8, 1), (2, 8, 1), (3, 8, 1), (4, 8, 1), (5, 8, 1), (6, 8, 1), (7, 8, 2)]
```
阅读全文