if "op" in lis_op: name = "op" 转换成go语言
时间: 2023-11-05 19:56:02 浏览: 111
在将该代码段转换成Go语言时,可以使用以下方式:
```
if lis_op.Contains("op") {
name := "op"
}
```
在Go语言中,可以使用字符串的`Contains`方法来检查字符串中是否包含某个子字符串。然后可以使用`:=`运算符来声明并初始化一个变量。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [【verbs】ibv_get_device_name()|ibv_get_device_list()|verbs api](https://blog.csdn.net/bandaoyu/article/details/116539866)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
def gru_features(self, x, predict=False): x_input = x out = None out_lis = [] out_weight_list = [] if ( self.model_type == 'AdaRNN') else None for i in range(self.num_layers): out, _ = self.features[i](x_input.float()) x_input = out out_lis.append(out) if self.model_type == 'AdaRNN' and predict == False: out_gate = self.process_gate_weight(x_input, i) out_weight_list.append(out_gate) return out, out_lis, out_weight_list
这是一个用于提取特征的函数。该函数接受输入数据x,并根据模型的参数进行GRU层的计算。函数会返回GRU层的输出以及中间层的输出列表和权重列表(仅适用于AdaRNN模型)。
函数首先将输入数据赋值给x_input变量,然后使用循环遍历模型的每一层。在每一层中,函数会将x_input输入到GRU层中,并将输出保存到out变量中。然后,将out添加到out_lis列表中,以便在后续的操作中使用。
如果模型的类型是AdaRNN,并且predict参数为False(即非预测阶段),函数会调用process_gate_weight函数处理x_input并将结果添加到out_weight_list中。
最后,函数会返回out(GRU层的输出)、out_lis(中间层的输出列表)和out_weight_list(权重列表)作为结果。
# 不同组合的时间均值 lis_i_1 = ['user_id','product','campaign_id','webpage_id','product_category_id', 'user_group_id','age_level','gender','user_depth','var_1'] for c in lis_i_1: df_tr_te[str(c) + '_user_time_hour_mean'] = df_tr_te.groupby(c)['user_time_hour'].transform('mean') df_tr_te[str(c) + '_user_time_day_mean'] = df_tr_te.groupby(c)['user_time_hour'].transform('mean') df_tr_te[str(c) + '_user_time_hour_sum'] = df_tr_te.groupby(c)['user_time_hour'].transform('sum') df_tr_te[str(c) + '_user_time_day_sum'] = df_tr_te.groupby(c)['user_time_hour'].transform('sum')
这段代码的作用是对数据集进行特征工程处理,根据不同的组合将用户在不同时间段内的行为进行统计。具体来说,对于列表 `lis_i_1` 中的每个特征,都构造了四个新特征:
- `str(c) + '_user_time_hour_mean'`:表示在当前特征值相同的情况下,用户行为在每小时的平均次数。
- `str(c) + '_user_time_day_mean'`:表示在当前特征值相同的情况下,用户行为在每天的平均次数。
- `str(c) + '_user_time_hour_sum'`:表示在当前特征值相同的情况下,用户行为在每小时的总次数。
- `str(c) + '_user_time_day_sum'`:表示在当前特征值相同的情况下,用户行为在每天的总次数。
通过对不同特征的不同组合,可以得到更加丰富的用户行为特征,对于模型的训练和预测都会有一定的帮助。
阅读全文