softmax回归的从零开始实现代码,完成对Fashion-MNIST数据集的训练和预测任务完整的代码
时间: 2024-09-19 18:04:44 浏览: 50
Softmax回归,也称为多元逻辑回归,是一种常用于分类任务的线性模型,它通过softmax函数将线性结果转换为概率分布。以下是使用Python和TensorFlow库从头开始实现softmax回归,并针对Fashion-MNIST数据集进行训练和预测的一个简单示例:
```python
import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.utils import to_categorical
# 加载Fashion-MNIST数据集
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
# 创建一个简单的Sequential模型
model = Sequential([
Flatten(input_shape=(28, 28)), # 将图片展平成一维输入
Dense(128, activation='relu'), # 全连接层,使用ReLU激活
Dense(10, activation='softmax') # 输出层,使用softmax进行多分类
])
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit(train_images, train_labels, epochs=10, validation_split=0.1)
# 预测
def predict(image):
image = image.reshape(1, 28, 28) / 255.0
return model.predict_classes(image)
# 示例预测
prediction = predict(test_images[0])
print("Predicted class:", prediction)
# 查看历史性能
阅读全文