AttributeError: module 'd2l.torch' has no attribute 'resnet18'
时间: 2023-08-03 07:03:23 浏览: 240
这个错误是因为在 'd2l.torch' 模块中并没有名为 'resnet18' 的属性。可能是你在尝试使用 'd2l.torch.resnet18' 时出错了。
要解决这个问题,你可以检查一下是否导入了正确的模块,并且确认模块中是否包含 'resnet18' 这个属性。你可以查看官方文档或者源代码来确认该模块是否包含所需属性。另外,也可以尝试使用其他的模块或库来获取 'resnet18' 模型。
相关问题
AttributeError: module 'torch.nn.modules' has no attribute 'resnet50'
这个错误通常是由于PyTorch版本问题引起的。在较旧的版本中,`resnet50`是在`torchvision.models`中定义的,而在较新的版本中,它被移动到了`torchvision.models.resnet`中。因此,如果您使用的是较旧的版本,请使用以下代码:
```python
import torchvision.models as models
resnet50 = models.resnet50(pretrained=True)
```
如果您使用的是较新的版本,请使用以下代码:
```python
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet50(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
state_dict = model_zoo.load_url(model_urls['resnet50'])
model.load_state_dict(state_dict)
return model
resnet50 = resnet50(pretrained=True)
```
AttributeError: module 'torch.jit' has no attribute 'compile'
非常抱歉,我之前给出的回答有误。在 PyTorch 中,确实没有名为 `torch.compile` 的函数。
如果你想要将模型编译为 TorchScript 格式,正确的方法是使用 `torch.jit.script` 函数。这个函数将模型转换为 TorchScript,并返回一个可调用的 TorchScript 模块。
下面是一个示例代码:
```python
import torch
import torchvision.models as models
# 加载一个预训练的模型
model = models.resnet18(pretrained=True)
# 将模型转换为 TorchScript
scripted_model = torch.jit.script(model)
# 使用 TorchScript 模块进行推理
input_tensor = torch.randn(1, 3, 224, 224)
output = scripted_model(input_tensor)
```
请注意,`torch.jit.script` 函数可以将大多数的 PyTorch 模型转换为 TorchScript,但也有一些限制。你可以查阅 PyTorch 官方文档中关于 TorchScript 的部分,了解更多关于转换模型和使用 TorchScript 的详细信息。
如果你有其他问题或需要进一步帮助,请随时提问。
阅读全文