.max(dim=1)[1]
时间: 2024-01-12 15:02:41 浏览: 138
.max(dim=1)表示在第1维度上求最大值,并返回最大值所在的索引。具体来说,在一个3维的tensor中,.max(dim=1)表示在第1维度上进行操作,比较每个子列表中的元素大小,并返回最大值所在的索引。例如,对于一个tensor a,可以通过a.max(dim=1)来获取每个子列表中的最大值所在的索引。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [Pytorch笔记:维度dim的定义及其理解使用](https://blog.csdn.net/vincent_duan/article/details/120064420)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [卷积神经网络——LeNet(pytorch实现)](https://blog.csdn.net/Pcl2001/article/details/124150775)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [pytorch中torch.max和Tensor.view函数用法详解](https://download.csdn.net/download/weixin_38697063/13761162)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文