def forward(self, x1, x2): x1 = x1.to(torch.float32) x2 = x2.to(torch.float32) channel1_conv1 = self.channel1_conv1(x1).squeeze(dim=2) channel1_conv1 = torch.max(channel1_conv1, dim=1)[0].unsqueeze(dim=1) channel1_conv2 = self.channel1_conv2(x1).squeeze(dim=2) channel1_conv2 = torch.max(channel1_conv2, dim=1)[0].unsqueeze(dim=1) channel1_conv3 = self.channel1_conv3(x1).squeeze(dim=2) channel1_conv3 = torch.max(channel1_conv3, dim=1)[0].unsqueeze(dim=1) channel1_conv4 = self.channel1_conv4(x1).squeeze(dim=2) channel1_conv4 = torch.max(channel1_conv4, dim=1)[0].unsqueeze(dim=1) X1 = torch.cat([channel1_conv1, channel1_conv2, channel1_conv3, channel1_conv4], dim=1) channel2_conv1 = self.channel2_conv1(x2).squeeze(dim=2) channel2_conv1 = torch.max(channel2_conv1, dim=1)[0].unsqueeze(dim=1) channel2_conv2 = self.channel2_conv2(x2).squeeze(dim=2) channel2_conv2 = torch.max(channel2_conv2, dim=1)[0].unsqueeze(dim=1) channel2_conv3 = self.channel2_conv3(x2).squeeze(dim=2) channel2_conv3 = torch.max(channel2_conv3, dim=1)[0].unsqueeze(dim=1) channel2_conv4 = self.channel2_conv4(x2).squeeze(dim=2) channel2_conv4 = torch.max(channel2_conv4, dim=1)[0].unsqueeze(dim=1) X2 = torch.cat([channel2_conv1, channel2_conv2, channel2_conv3, channel2_conv4], dim=1) X2 = torch.cat([X1, X2], dim=1) output = self.layer3(X2)
时间: 2023-12-01 14:04:56 浏览: 39
浅谈pytorch中torch.max和F.softmax函数的维度解释
这段代码是一个神经网络的前向传播函数,输入是两个张量 x1 和 x2,经过一系列卷积和池化操作后,最终输出一个张量 output。这个神经网络的具体结构是由一些卷积层、池化层和全连接层构成的,其中 channel1_conv1-4 和 channel2_conv1-4 是卷积层,layer3 是全连接层。这个神经网络的输入是两个通道的数据,通过卷积和池化操作后,将两个通道的结果拼接在一起,最后通过全连接层生成输出。
阅读全文