def read_images(folder): images = [] labels = [] for filename in os.listdir(folder): label = filename.split('.')[0] img = cv2.imread(os.path.join(folder,filename)) if img is not None: images.append(img) labels.append(label) return images, labels # 提取特征向量 def extract_features(images): features = [] for img in images: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hist = cv2.calcHist([gray],[0],None,[256],[0,256]) features.append(hist.flatten()) return features # 读取图像和标签 images, labels = read_images('C:/Users/Administrator/Desktop/111') # 提取特征向量 features = extract_features(images) # 训练模型 clf = svm.SVC() clf.fit(features, labels) joblib.dump(clf, 'model.pkl' 请问这个原理是什么

时间: 2024-03-28 16:38:43 浏览: 16
这段代码实现了一个基于支持向量机(SVM)的图像分类器。具体来说,它的实现过程如下: 1. `read_images(folder)`函数读取指定文件夹中的图像文件,并将它们和对应的标签保存到`images`和`labels`列表中。 2. `extract_features(images)`函数提取每个图像的特征向量,这里使用图像的灰度直方图作为特征。具体来说,它将每个图像转换为灰度图像,计算其灰度直方图,并将其展平为一维向量,最终将所有特征向量保存到`features`列表中。 3. `clf = svm.SVC()`创建一个SVM分类器的实例。 4. `clf.fit(features, labels)`使用`features`列表中的特征向量和`labels`列表中的标签对SVM分类器进行训练。 5. `joblib.dump(clf, 'model.pkl')`将训练好的SVM分类器保存到名为`model.pkl`的文件中,以便后续使用。 总体来说,这段代码的原理是使用SVM分类器对图像进行分类,其中图像的灰度直方图作为特征向量。通过对许多图像进行训练,SVM分类器可以学习到如何将不同的图像分配到不同的类别中。最终,我们可以将训练好的模型保存到文件中,并在需要时加载它以进行预测。
相关问题

import cv2 import os import numpy as np from sklearn import svm import joblib def read_images(folder): images = [] labels = [] for filename in os.listdir(folder): label = filename.split('.')[0] img = cv2.imread(os.path.join(folder,filename)) if img is not None: images.append(img) labels.append(label) return images, labels # 提取特征向量 def extract_features(images): features = [] for img in images: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hist = cv2.calcHist([gray],[0],None,[256],[0,256]) features.append(hist.flatten()) return features # 读取图像和标签 images, labels = read_images('C:/Users/Administrator/Desktop/111') # 提取特征向量 features = extract_features(images) print(features) # 训练模型 clf = svm.SVC() clf.fit(features, labels) # 保存模型到文件 joblib.dump(clf, 'model.pkl') clf = joblib.load('E:/xiangmu/measure/model.pkl') print(clf) # 预测新图像 img = cv2.imread('C:/Users/Administrator/Downloads/092b08c53b49d92254db7874c0a7b073.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hist = cv2.calcHist([gray],[0],None,[256],[0,256]) features = np.array(hist.flatten()).reshape(1, -1) print(clf.predict(features)) label = clf.predict(features)[0] print('识别结果:', label) 帮我把这写代码,打印识别率

这段代码中没有计算识别率的部分,需要添加一些代码来实现。以下是修改过的代码: ```python import cv2 import os import numpy as np from sklearn import svm from sklearn.metrics import accuracy_score import joblib def read_images(folder): images = [] labels = [] for filename in os.listdir(folder): label = filename.split('.')[0] img = cv2.imread(os.path.join(folder,filename)) if img is not None: images.append(img) labels.append(label) return images, labels def extract_features(images): features = [] for img in images: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hist = cv2.calcHist([gray],[0],None,[256],[0,256]) features.append(hist.flatten()) return features images, labels = read_images('C:/Users/Administrator/Desktop/111') features = extract_features(images) clf = svm.SVC() clf.fit(features, labels) joblib.dump(clf, 'model.pkl') clf = joblib.load('model.pkl') test_images, test_labels = read_images('C:/Users/Administrator/Desktop/222') test_features = extract_features(test_images) pred_labels = clf.predict(test_features) accuracy = accuracy_score(test_labels, pred_labels) print('识别率:', accuracy) ``` 这段代码会读取一个文件夹中的图片作为训练数据,另一个文件夹中的图片作为测试数据,然后计算识别率并打印出来。注意修改文件夹的路径和文件名的格式。

label2int = {'buildings':0,'forest':1,'glacier':2,'mountain':3,'sea':4,'street':5} int2label = dict([val,key] for key,val in label2int.items()) def get_images(directory): Images = [] Labels = [] for labels in os.listdir(directory): label = label2int[labels] for image_file in os.listdir(directory+labels): #Extracting the file name of the image from Class Label folder image = cv2.imread(directory+labels+r'/'+image_file) # Reading the image (OpenCV) image = cv2.resize(image,(150,150)) #Resize the image, Some images are different sizes. (Resizing is very Important) Images.append(image) Labels.append(label) return shuffle(Images,Labels,random_state=817328462) #Shuffle the dataset you just prepared. def get_classlabel(class_code): labels = {2:'glacier', 4:'sea', 0:'buildings', 1:'forest', 5:'street', 3:'mountain'} return labels[class_code] Images, Labels = get_images('../input/seg_train/') #Extract the training images from the folders. Images = np.array(Images) #converting the list of images to numpy array. Labels = np.array(Labels) 请用中文分别解释上述每行代码的作用

1. `label2int = {'buildings':0,'forest':1,'glacier':2,'mountain':3,'sea':4,'street':5}`:创建一个字典,将类别名称映射为数字标签。 2. `int2label = dict([val,key] for key,val in label2int.items())`:创建一个字典,将数字标签映射为类别名称。 3. `def get_images(directory):`:定义一个函数,用于从给定目录中获取图像和标签。 4. `Images = []`:创建一个空列表,用于存储图像。 5. `Labels = []`:创建一个空列表,用于存储标签。 6. `for labels in os.listdir(directory):`:遍历目录中的所有标签文件夹。 7. `label = label2int[labels]`:将标签名称转换为数字标签。 8. `for image_file in os.listdir(directory+labels):`:遍历标签文件夹中的所有图像文件。 9. `image = cv2.imread(directory+labels+r'/'+image_file)`:读取图像文件,使用OpenCV库函数cv2.imread()。 10. `image = cv2.resize(image,(150,150))`:调整图像大小为150x150像素,以确保所有图像都具有相同的尺寸。 11. `Images.append(image)`:将图像添加到图像列表中。 12. `Labels.append(label)`:将标签添加到标签列表中。 13. `return shuffle(Images,Labels,random_state=817328462)`:将图像和标签列表打乱,并返回打乱后的结果。 14. `def get_classlabel(class_code):`:定义一个函数,用于将数字标签转换为类别名称。 15. `labels = {2:'glacier', 4:'sea', 0:'buildings', 1:'forest', 5:'street', 3:'mountain'}`:创建一个字典,将数字标签映射为类别名称。 16. `return labels[class_code]`:返回给定数字标签对应的类别名称。 17. `Images, Labels = get_images('../input/seg_train/')`:从给定目录中获取图像和标签。 18. `Images = np.array(Images)`:将图像列表转换为NumPy数组。 19. `Labels = np.array(Labels)`:将标签列表转换为NumPy数组。

相关推荐

检查下述代码并修改错误import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense import pandas as pd import numpy as np import cv2 import os 构建模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(80, 160, 3))) # (None, 80, 160, 3) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(62, activation='softmax')) # 36表示0-9数字和A-Z(a-z)字母的类别数 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 验证码图片加载 定义训练数据和标签的文件夹路径 train_data_folder = r'C:\Users\CXY\PycharmProjects\pythonProject\data\train' train_labels_folder = r'C:\Users\CXY\PycharmProjects\pythonProject\data' 加载训练数据 train_data = [] train_labels = pd.read_csv(r'C:\Users\CXY\PycharmProjects\pythonProject\data\traincodes.csv')['code'].values 遍历训练数据文件夹,读取每个图片并添加到训练数据列表 for filename in os.listdir(train_data_folder): img_path = os.path.join(train_data_folder, filename) img = cv2.imread(img_path) train_data.append(img) # 遍历训练标签文件夹,读取每个标签并添加到训练标签列表 for filename in os.listdir(train_labels_folder): label_path = os.path.join(train_labels_folder, filename) label = cv2.imread(label_path, 0) # 读取灰度图像 train_labels.append(label) 转换训练数据和标签为NumPy数组 train_data = np.array(train_data) train_labels = np.array(train_labels) 训练模型 model.fit(train_data, train_labels, epochs=10, batch_size=32) 保存模型 model.save('captcha_model.h5')

代码出现上述问题,完整代码如下import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense import pandas as pd import numpy as np import cv2 import os # 构建模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(80, 160, 3))) # (None, 80, 160, 3) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(62, activation='softmax')) # 36表示0-9数字和A-Z(a-z)字母的类别数 # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 验证码图片加载 # 定义训练数据和标签的文件夹路径 train_data_folder = r'C:\Users\CXY\PycharmProjects\pythonProject\data\train' train_labels_folder = r'C:\Users\CXY\PycharmProjects\pythonProject\data' # 加载训练数据 train_data = [] train_labels = [] # 遍历训练数据文件夹,读取每个图片并添加到训练数据列表 for filename in os.listdir(train_data_folder): img_path = os.path.join(train_data_folder, filename) img = cv2.imread(img_path) train_data.append(img) # 遍历训练标签文件夹,读取每个标签并添加到训练标签列表 for filename in os.listdir(train_labels_folder): label_path = os.path.join(train_labels_folder, filename) label = cv2.imread(label_path, 0) # 读取灰度图像 train_labels.append(label) # 转换训练数据和标签为NumPy数组 train_data = np.array(train_data) train_labels = np.array(train_labels) # 训练模型 model.fit(train_data, train_labels, epochs=10, batch_size=32) # 保存模型 model.save('captcha_model.h5')

最新推荐

recommend-type

grpcio-1.63.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

SQLyog-13.1.3-0.x86Community.exe

SQLyog-13.1.3-0.x86Community
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。