对离散傅立叶变换矩阵FIM,采样一组概率p,已知拉普拉斯参数,计算相应的噪声值,并将噪声加入FIM,python函数以FIM和拉普拉斯参数为形参,返回加噪后的FIM

时间: 2023-12-11 21:02:43 浏览: 26
这里是一个Python函数实现,它采样一组概率p,已知拉普拉斯参数,计算相应的噪声值,并将噪声加入FIM。该函数以FIM和拉普拉斯参数为形参,返回加噪后的FIM: ```python import numpy as np def add_laplace_noise(FIM, lambda_): # 生成拉普拉斯噪声并添加到FIM上 noise = np.random.laplace(scale=lambda_, size=FIM.shape) FIM_noisy = FIM + noise return FIM_noisy ``` 在上述代码中,我们使用np.random.laplace函数生成一个与FIM相同大小的拉普拉斯噪声,并将其与FIM相加得到加噪后的FIM_noisy。最后,我们返回加噪后的FIM_noisy。注意,这里不需要采样概率p,因为我们只需要对FIM进行加噪即可。
相关问题

对离散傅立叶变换矩阵FIM,采样一组概率p,已知拉普拉斯参数,计算相应的噪声值,并将噪声加入FIM,python函数返回加噪后的FIM

下面是一个Python函数实现,用于对离散傅立叶变换矩阵FIM采样一组概率p,并将拉普拉斯噪声添加到FIM中,返回加噪后的FIM: ```python import numpy as np def add_laplace_noise(FIM, p, epsilon): # 计算灵敏度 sensitivity = 1 / np.sqrt(FIM.shape[0]) # 计算噪声的标准差 lambda_ = sensitivity / epsilon std = np.sqrt(2) * lambda_ # 生成拉普拉斯噪声并添加到FIM上 noise = np.random.laplace(scale=std, size=FIM.shape) FIM_noisy = FIM + noise return FIM_noisy ``` 在上述代码中,我们首先计算FIM的灵敏度sensitivity,然后根据给定的隐私预算epsilon计算拉普拉斯噪声的标准差std。接着,我们使用np.random.laplace函数生成一个与FIM相同大小的拉普拉斯噪声,并将其与FIM相加得到加噪后的FIM_noisy。最后,我们返回加噪后的FIM_noisy。

对离散傅立叶变换矩阵FIM,采样一组概率p,在拉普拉斯参数最小时,计算相应的噪声值

假设离散傅立叶变换矩阵的大小为n×n,采样的概率为p,则选取的元素数量为k=np.floor(p*n^2)。 在拉普拉斯参数最小时,噪声的大小可以计算为: noise_scale = np.sqrt(2 * k * np.log(1.25 / epsilon)) / np.abs(dft_coef.min()) 其中,epsilon为隐私预算,dft_coef为选取的DFT系数的绝对值,取最小值的原因是在拉普拉斯机制中,噪声的大小与原始数据的灵敏度有关,而灵敏度的最大值等于数据的最大值减去数据的最小值。 具体的实现代码如下: ```python import numpy as np # 定义离散傅立叶变换矩阵FIM def FIM(n): F = np.zeros((n, n), dtype=complex) for i in range(n): for j in range(n): F[i][j] = np.exp(-2j * np.pi * i * j / n) return F # 采样概率为p的DFT系数 def sample_dft_coef(F, p): n = F.shape[0] k = int(np.floor(p * n * n)) dft_coef = np.zeros((k, k), dtype=complex) indices = np.random.choice(n*n, k, replace=False) for i in range(k): row = indices[i] // n col = indices[i] % n dft_coef[i // k][i % k] = F[row][col] return dft_coef # 计算拉普拉斯参数最小时的噪声大小 def lap_noise(F, p, epsilon): dft_coef = sample_dft_coef(F, p) noise_scale = np.sqrt(2 * k * np.log(1.25 / epsilon)) / np.abs(dft_coef.min()) return noise_scale # 示例 n = 8 p = 0.3 epsilon = 0.1 F = FIM(n) noise_scale = lap_noise(F, p, epsilon) print(noise_scale) ``` 请注意,上述示例代码仅为演示目的,实际应用中需要根据具体情况进行调整。

相关推荐

最新推荐

recommend-type

nodejs-x64-0.10.21.tgz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v4.1.1-linux-armv6l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v4.1.0-linux-arm64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

matlab S-Function 混合系统仿真

matlab绘制函数图像 MATLAB (Matrix Laboratory) 是一种用于数值计算的高级编程语言和交互式环境,由 MathWorks 公司开发。它广泛用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。以下是一些 MATLAB 的基本特性和使用方式: 1. 基本语法 变量:MATLAB 中的变量不需要预先声明,直接赋值即可。 数组:MATLAB 使用方括号 [] 创建数组,数组索引从 1 开始。 运算符:包括加、减、乘、除、乘方等。 函数:MATLAB 有大量内置函数,也可以编写自定义函数。 2. 绘图 MATLAB 提供了丰富的绘图功能,如绘制线图、散点图、柱状图、饼图等。 matlab x = 0:0.01:2*pi; y = sin(x); plot(x, y); title('Sine Function'); xlabel('x'); ylabel('y'); 3. 数据分析 MATLAB 可以处理各种类型的数据,包括矩阵、向量、数组等,并提供了许多数据分析函数,如统计函数、信号处理函数等。 4. 脚本和函数
recommend-type

智慧交通规划方案.pptx

智慧交通规划方案.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。