def create_skipgram_dataset(text): import random data = [] for i in range(2, len(text) - 2): data.append((text[i], text[i-2], 1)) data.append((text[i], text[i-1], 1)) data.append((text[i], text[i+1], 1)) data.append((text[i], text[i+2], 1)) # negative sampling for _ in range(4): if random.random() < 0.5 or i >= len(text) - 3: rand_id = random.randint(0, i-1) else: rand_id = random.randint(i+3, len(text)-1) data.append((text[i], text[rand_id], 0)) return data ​ ​ skipgram_train = create_skipgram_dataset(text) print('skipgram sample', skipgram_train[0])这段代码什么意思

时间: 2024-04-25 18:27:23 浏览: 12
这段代码是用来创建一个 Skip-gram 模型的数据集的,其中: - `text` 是一个文本序列,可以是一个字符串或一个列表等。 - `create_skipgram_dataset` 函数遍历文本中的每个词汇,对于每个词汇,构建多个正样本和负样本。其中,每个正样本包含一个目标词汇和一个上下文词汇,即 `(target_word, context_word, 1)`,表示目标词汇在上下文中出现过。每个负样本也包含一个目标词汇和一个随机选择的词汇,即 `(target_word, rand_word, 0)`,表示目标词汇和随机选择的词汇没有出现关系。 - `data` 是一个列表,其中每个元素都是一个元组,包含一个目标词汇、一个上下文词汇或随机选择的词汇,以及一个标记,即 `[(target1, context1/negative1, label1), (target2, context2/negative2, label2), ...]`。 - `skipgram_train = create_skipgram_dataset(text)` 将创建好的 Skip-gram 数据集赋值给 `skipgram_train` 变量。 - `print('skipgram sample', skipgram_train[0])` 输出数据集中的第一个样本,即一个目标词汇、一个上下文词汇或随机选择的词汇,以及对应的标记。 这个 Skip-gram 模型数据集可以用于训练机器学习模型,使得模型能够根据目标词汇预测上下文词汇或随机选择的词汇。
相关问题

给出一个以ResNet为模型的具有三特征输入{x,y,z}三输出{t1,t2,t3}的使用pytorch的train_dataset和test_dataset代码

以下是一个以ResNet模型为基础,具有三个特征输入{x, y, z}和三个输出{t1, t2, t3}的train_dataset和test_dataset的pytorch代码: ``` import torch from torch.utils.data import Dataset, DataLoader import numpy as np class CustomDataset(Dataset): def __init__(self, data, targets, transform=None): self.data = data self.targets = targets self.transform = transform def __getitem__(self, index): x = self.data[index] y = self.targets[index] if self.transform: x = self.transform(x) t1 = y[0] t2 = y[1] t3 = y[2] return x, t1, t2, t3 def __len__(self): return len(self.data) # Create train and test datasets train_data = np.random.rand(100, 3) # 100 samples with 3 features train_targets = np.random.rand(100, 3) # 100 samples with 3 targets train_dataset = CustomDataset(train_data, train_targets) test_data = np.random.rand(50, 3) # 50 samples with 3 features test_targets = np.random.rand(50, 3) # 50 samples with 3 targets test_dataset = CustomDataset(test_data, test_targets) # Create dataloaders train_loader = DataLoader(train_dataset, batch_size=10, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=10, shuffle=False) # Define the ResNet model import torch.nn as nn import torch.nn.functional as F class ResNet(nn.Module): def __init__(self): super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 3) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x1 = self.fc3(x) x2 = self.fc3(x) x3 = self.fc3(x) return x1, x2, x3 # Train the model model = ResNet() criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) for epoch in range(10): # train for 10 epochs running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, t1, t2, t3 = data optimizer.zero_grad() outputs1, outputs2, outputs3 = model(inputs.float()) loss = criterion(outputs1, t1.float()) + criterion(outputs2, t2.float()) + criterion(outputs3, t3.float()) loss.backward() optimizer.step() running_loss += loss.item() if i % 10 == 9: # print every 10 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 10)) running_loss = 0.0 # Test the model with torch.no_grad(): total_loss = 0.0 for i, data in enumerate(test_loader, 0): inputs, t1, t2, t3 = data outputs1, outputs2, outputs3 = model(inputs.float()) loss = criterion(outputs1, t1.float()) + criterion(outputs2, t2.float()) + criterion(outputs3, t3.float()) total_loss += loss.item() print('Test loss: %.3f' % (total_loss / len(test_loader))) ``` 在这个例子中,我们使用了一个ResNet模型,它有三个输出,每个输出都对应于一个目标。我们还定义了一个CustomDataset类,它将数据和目标作为输入,并将它们打包成一个元组。最后,我们使用DataLoader类将数据集加载到模型中进行训练和测试。

Exercise#1: Decision Tree and support vector machine. Goal Implement the decision tree algorithm and the support vector machine, respectively and compare their performances. Dataset (in folder ‘data1’) We will use the Adult dataset whose description is available here. The training set (adult.data) and evaluation set (adult.test) can be downloaded here. The prediction task is to determine whether a person makes over 50K a year. Preprocessing Remove all the records containing '?' (i.e., missing values). Also, remove the attribute "native-country". you can not use pandas, DecisionTreeClassifier and SVC

Sure, I can help you with that. Let's start by importing the necessary libraries and loading the dataset. ```python import csv import random import math # Load dataset def load_dataset(filename): dataset = [] with open(filename) as file: reader = csv.reader(file) for row in reader: if '?' not in row: dataset.append(row[:-1] + [1 if row[-1].strip() == '>50K' else 0]) return dataset # Split dataset into training and evaluation sets def split_dataset(dataset, split_ratio): train_size = int(len(dataset) * split_ratio) train_set = [] eval_set = list(dataset) while len(train_set) < train_size: index = random.randrange(len(eval_set)) train_set.append(eval_set.pop(index)) return train_set, eval_set dataset = load_dataset('data1/adult.data') train_set, eval_set = split_dataset(dataset, 0.8) ``` Now, let's implement the decision tree algorithm. We will use the ID3 algorithm with entropy as the splitting criterion. ```python # Calculate entropy of a dataset def entropy(dataset): num_records = len(dataset) label_counts = {} for record in dataset: label = record[-1] if label not in label_counts: label_counts[label] = 0 label_counts[label] += 1 entropy = 0.0 for label in label_counts: prob = float(label_counts[label]) / num_records entropy -= prob * math.log2(prob) return entropy # Split dataset based on a given attribute def split_dataset_by_attribute(dataset, attribute_index): splits = {} for record in dataset: attribute_value = record[attribute_index] if attribute_value not in splits: splits[attribute_value] = [] splits[attribute_value].append(record) return splits # Calculate information gain of a dataset after splitting on a given attribute def information_gain(dataset, attribute_index): attribute_values = set([record[attribute_index] for record in dataset]) split_entropies = 0.0 for attribute_value in attribute_values: split = [record for record in dataset if record[attribute_index] == attribute_value] prob = float(len(split)) / len(dataset) split_entropies += prob * entropy(split) return entropy(dataset) - split_entropies # Find the attribute with the highest information gain def find_best_split_attribute(dataset, attribute_indices): best_attribute_index = -1 best_information_gain = -1.0 for attribute_index in attribute_indices: information_gain_val = information_gain(dataset, attribute_index) if information_gain_val > best_information_gain: best_information_gain = information_gain_val best_attribute_index = attribute_index return best_attribute_index # Create a decision tree recursively def create_decision_tree(dataset, attribute_indices): labels = [record[-1] for record in dataset] # If all records have the same label, return a leaf node with that label if len(set(labels)) == 1: return labels[0] # If no attributes are left, return a leaf node with the majority label if len(attribute_indices) == 0: majority_label = max(set(labels), key=labels.count) return majority_label # Otherwise, find the best attribute to split on and create a subtree for each possible value best_attribute_index = find_best_split_attribute(dataset, attribute_indices) best_attribute = attribute_indices[best_attribute_index] tree = {best_attribute: {}} attribute_indices.remove(best_attribute) splits = split_dataset_by_attribute(dataset, best_attribute) for attribute_value in splits: tree[best_attribute][attribute_value] = create_decision_tree(splits[attribute_value], attribute_indices[:]) attribute_indices.insert(best_attribute_index, best_attribute) return tree # Predict the label of a record using a decision tree def predict(tree, record): if isinstance(tree, str): return tree attribute_index = next(iter(tree)) attribute_value = record[attribute_index] if attribute_value not in tree[attribute_index]: return None subtree = tree[attribute_index][attribute_value] return predict(subtree, record) # Calculate accuracy of a decision tree on a dataset def calculate_accuracy(tree, dataset): num_correct = 0 for record in dataset: predicted_label = predict(tree, record) if predicted_label is not None and predicted_label == record[-1]: num_correct += 1 return float(num_correct) / len(dataset) # Test decision tree algorithm attribute_indices = list(range(len(dataset[0]) - 1)) decision_tree = create_decision_tree(train_set, attribute_indices) accuracy = calculate_accuracy(decision_tree, eval_set) print('Accuracy:', accuracy) ``` Finally, let's implement the support vector machine algorithm using the sequential minimal optimization (SMO) algorithm. ```python # Calculate dot product of two vectors def dot_product(x, y): return sum([x[i] * y[i] for i in range(len(x))]) # Calculate magnitude of a vector def magnitude(x): return math.sqrt(dot_product(x, x)) # Calculate distance between two vectors def distance(x, y): return magnitude([x[i] - y[i] for i in range(len(x))]) # Calculate kernel function for two vectors def kernel(x, y, kernel_type='linear', gamma=0.1): if kernel_type == 'linear': return dot_product(x, y) elif kernel_type == 'gaussian': return math.exp(-gamma * distance(x, y)) # Train a support vector machine using the SMO algorithm def train_svm(dataset, kernel_type='linear', C=1.0, max_iterations=100, tolerance=0.01, gamma=0.1): # Initialize alpha vector and bias term num_records = len(dataset) alpha = [0.0] * num_records bias = 0.0 # Initialize kernel matrix kernel_matrix = [[kernel(record1[:-1], record2[:-1], kernel_type, gamma) for record2 in dataset] for record1 in dataset] # Loop until convergence or max_iterations is reached num_iterations = 0 while num_iterations < max_iterations: num_changed_alphas = 0 for i in range(num_records): # Calculate error for record i error_i = sum([alpha[j] * dataset[j][-1] * kernel_matrix[j][i] for j in range(num_records)]) + bias - dataset[i][-1] # Check if alpha i violates KKT conditions if (dataset[i][-1] * error_i < -tolerance and alpha[i] < C) or (dataset[i][-1] * error_i > tolerance and alpha[i] > 0): # Select a second alpha j randomly j = i while j == i: j = random.randrange(num_records) # Calculate error for record j error_j = sum([alpha[k] * dataset[k][-1] * kernel_matrix[k][j] for k in range(num_records)]) + bias - dataset[j][-1] # Save old alpha values alpha_i_old = alpha[i] alpha_j_old = alpha[j] # Calculate L and H bounds for alpha j if dataset[i][-1] != dataset[j][-1]: L = max(0, alpha[j] - alpha[i]) H = min(C, C + alpha[j] - alpha[i]) else: L = max(0, alpha[i] + alpha[j] - C) H = min(C, alpha[i] + alpha[j]) # If L == H, skip this pair of alphas if L == H: continue # Calculate eta (i.e., the second derivative of the objective function) eta = 2 * kernel_matrix[i][j] - kernel_matrix[i][i] - kernel_matrix[j][j] # If eta >= 0, skip this pair of alphas if eta >= 0: continue # Calculate new value for alpha j alpha[j] -= (dataset[j][-1] * (error_i - error_j)) / eta # Clip new value for alpha j to be between L and H alpha[j] = max(L, min(H, alpha[j])) # If alpha j has not changed much, skip this pair of alphas if abs(alpha[j] - alpha_j_old) < tolerance: continue # Calculate new value for alpha i alpha[i] += dataset[i][-1] * dataset[j][-1] * (alpha_j_old - alpha[j]) # Calculate new bias term b1 = bias - error_i - dataset[i][-1] * (alpha[i] - alpha_i_old) * kernel_matrix[i][i] - dataset[j][-1] * (alpha[j] - alpha_j_old) * kernel_matrix[i][j] b2 = bias - error_j - dataset[i][-1] * (alpha[i] - alpha_i_old) * kernel_matrix[i][j] - dataset[j][-1] * (alpha[j] - alpha_j_old) * kernel_matrix[j][j] if 0 < alpha[i] < C: bias = b1 elif 0 < alpha[j] < C: bias = b2 else: bias = (b1 + b2) / 2 num_changed_alphas += 1 # If no alphas were changed in this iteration, increment counter if num_changed_alphas == 0: num_iterations += 1 else: num_iterations = 0 # Select support vectors (i.e., non-zero alphas) support_vectors = [] support_vector_labels = [] for i in range(num_records): if alpha[i] > 0: support_vectors.append(dataset[i][:-1]) support_vector_labels.append(dataset[i][-1]) # Return support vectors, support vector labels, and bias term return support_vectors, support_vector_labels, bias # Predict the label of a record using a support vector machine def predict_svm(support_vectors, support_vector_labels, bias, record, kernel_type='linear', gamma=0.1): predicted_label = None for i in range(len(support_vectors)): kernel_val = kernel(support_vectors[i], record, kernel_type, gamma) predicted_label += support_vector_labels[i] * kernel_val predicted_label += bias return 1 if predicted_label > 0 else 0 # Calculate accuracy of a support vector machine on a dataset def calculate_accuracy_svm(support_vectors, support_vector_labels, bias, dataset, kernel_type='linear', gamma=0.1): num_correct = 0 for record in dataset: predicted_label = predict_svm(support_vectors, support_vector_labels, bias, record[:-1], kernel_type, gamma) if predicted_label is not None and predicted_label == record[-1]: num_correct += 1 return float(num_correct) / len(dataset) # Test support vector machine algorithm support_vectors, support_vector_labels, bias = train_svm(train_set, 'linear', 1.0, 100, 0.01, 0.1) accuracy = calculate_accuracy_svm(support_vectors, support_vector_labels, bias, eval_set, 'linear', 0.1) print('Accuracy:', accuracy) ``` You can now compare the performances of the decision tree and support vector machine algorithms on the Adult dataset.

相关推荐

最新推荐

recommend-type

scrapy练习 获取喜欢的书籍

主要是根据网上大神做的 项目一 https://zhuanlan.zhihu.com/p/687522335
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。