用c语言写一个扫雷程序,要求先放雷后算数,实现鼠标操作

时间: 2023-12-29 07:17:16 浏览: 30
好的,我可以为您提供一些思路和代码示例。 1. 放雷 可以定义一个二维数组来表示雷区,其中 0 表示没有雷,1 表示有雷。可以使用 C 语言的 srand() 和 rand() 函数来随机生成雷的位置。 示例代码: ```c #include <stdlib.h> #include <time.h> #define ROW 10 // 雷区行数 #define COL 10 // 雷区列数 #define MINE_NUM 10 // 雷数量 int mine[ROW][COL]; // 雷区数组 // 放置雷 void place_mine() { int i, j, count = 0; srand((unsigned)time(NULL)); // 初始化随机数种子 while (count < MINE_NUM) { i = rand() % ROW; j = rand() % COL; if (mine[i][j] == 0) { // 没有雷 mine[i][j] = 1; // 放置雷 count++; // 雷数加 1 } } } ``` 2. 算数 在放置雷后,需要计算每个格子周围的雷数。可以使用一个嵌套循环来遍历雷区数组,对于每个格子,再使用另一个嵌套循环来遍历其周围的 8 个格子,统计周围的雷数。 示例代码: ```c // 计算周围的雷数 void calculate_mine() { int i, j, m, n, count; for (i = 0; i < ROW; i++) { for (j = 0; j < COL; j++) { if (mine[i][j] == 0) { // 没有雷 count = 0; for (m = i - 1; m <= i + 1; m++) { for (n = j - 1; n <= j + 1; n++) { if (m >= 0 && m < ROW && n >= 0 && n < COL && mine[m][n] == 1) { // 周围有雷 count++; // 雷数加 1 } } } mine[i][j] = count; // 记录周围的雷数 } } } } ``` 3. 鼠标操作 可以使用 C 语言的图形界面库来实现鼠标操作。比如,可以使用 Windows API 来创建窗口和处理消息,并使用 GDI+ 来绘制雷区。 下面是一个简单的示例,实现了一个 10x10 的雷区窗口,并使用红色表示雷,使用黑色表示数字。可以使用鼠标左键点击格子,如果是雷,则游戏失败;如果是数字,则显示数字;如果是空格,则自动展开周围的空格和数字。 示例代码: ```c #include <windows.h> #include <gdiplus.h> #pragma comment(lib, "gdiplus.lib") #define ROW 10 // 雷区行数 #define COL 10 // 雷区列数 #define CELL_SIZE 30 // 格子大小 int mine[ROW][COL]; // 雷区数组 int opened[ROW][COL]; // 已打开的格子 int game_over = 0; // 游戏是否结束 // 创建窗口 HWND create_window() { WNDCLASS wc = { 0 }; wc.lpfnWndProc = DefWindowProc; wc.hInstance = GetModuleHandle(NULL); wc.hCursor = LoadCursor(NULL, IDC_ARROW); wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1); wc.lpszClassName = "MyWindowClass"; RegisterClass(&wc); HWND hWnd = CreateWindow("MyWindowClass", "Minesweeper", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, CELL_SIZE * COL + 16, CELL_SIZE * ROW + 39, NULL, NULL, GetModuleHandle(NULL), NULL); ShowWindow(hWnd, SW_SHOWDEFAULT); return hWnd; } // 绘制格子 void draw_cell(HDC hdc, int x, int y, int value) { Gdiplus::Graphics graphics(hdc); Gdiplus::SolidBrush brush(Gdiplus::Color(255, 255, 255)); // 白色背景 graphics.FillRectangle(&brush, x, y, CELL_SIZE, CELL_SIZE); if (value >= 1 && value <= 8) { // 数字 Gdiplus::Font font(L"Arial", 16); Gdiplus::SolidBrush brush(Gdiplus::Color(0, 0, 0)); // 黑色数字 Gdiplus::StringFormat format; format.SetAlignment(Gdiplus::StringAlignmentCenter); format.SetLineAlignment(Gdiplus::StringAlignmentCenter); wchar_t s[2] = { (wchar_t)(value + '0'), L'\0' }; graphics.DrawString(s, 1, &font, Gdiplus::RectF(x, y, CELL_SIZE, CELL_SIZE), &format, &brush); } else if (value == 9) { // 红色雷 Gdiplus::SolidBrush brush(Gdiplus::Color(255, 0, 0)); graphics.FillEllipse(&brush, x + 4, y + 4, CELL_SIZE - 8, CELL_SIZE - 8); } } // 绘制雷区 void draw_mine(HWND hWnd, HDC hdc) { int i, j, x, y; for (i = 0; i < ROW; i++) { for (j = 0; j < COL; j++) { x = j * CELL_SIZE + 8; y = i * CELL_SIZE + 31; if (opened[i][j] || game_over) { // 已打开或游戏结束,显示数字或雷 draw_cell(hdc, x, y, mine[i][j]); } else { // 未打开,显示空白 draw_cell(hdc, x, y, 0); } if (game_over && mine[i][j] == 1) { // 游戏结束,显示未标记的雷 if (!opened[i][j]) { draw_cell(hdc, x, y, 9); } } } } } // 处理鼠标消息 void handle_mouse(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) { int x = GET_X_LPARAM(lParam) - 8; int y = GET_Y_LPARAM(lParam) - 31; int i = y / CELL_SIZE; int j = x / CELL_SIZE; if (i >= 0 && i < ROW && j >= 0 && j < COL) { if (msg == WM_LBUTTONDOWN && !opened[i][j]) { // 鼠标左键按下 opened[i][j] = 1; // 标记为已打开 if (mine[i][j] == 1) { // 点中雷,游戏结束 game_over = 1; } else if (mine[i][j] == 0) { // 点中空格,自动展开周围的空格和数字 int m, n; for (m = i - 1; m <= i + 1; m++) { for (n = j - 1; n <= j + 1; n++) { if (m >= 0 && m < ROW && n >= 0 && n < COL && !opened[m][n]) { opened[m][n] = 1; } } } } InvalidateRect(hWnd, NULL, TRUE); // 重绘窗口 } } } // 处理窗口消息 LRESULT CALLBACK window_proc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) { switch (msg) { case WM_MOUSEMOVE: case WM_LBUTTONDOWN: case WM_LBUTTONUP: handle_mouse(hWnd, msg, wParam, lParam); break; case WM_PAINT: { PAINTSTRUCT ps; HDC hdc = BeginPaint(hWnd, &ps); draw_mine(hWnd, hdc); EndPaint(hWnd, &ps); break; } case WM_DESTROY: PostQuitMessage(0); break; default: return DefWindowProc(hWnd, msg, wParam, lParam); } return 0; } // 主函数 int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) { place_mine(); // 放置雷 calculate_mine(); // 计算周围的雷数 HWND hWnd = create_window(); // 创建窗口 MSG msg; while (GetMessage(&msg, NULL, 0, 0)) { TranslateMessage(&msg); DispatchMessage(&msg); } return (int)msg.wParam; } ``` 注意,上面的示例代码只是一个简单的实现,还有很多细节需要处理,比如,游戏胜利的判断、右键标记雷、双击打开周围的数字等等。您可以根据您的需求进行修改和扩展。

相关推荐

最新推荐

recommend-type

C语言程序设计实现鼠标控制

鼠标系统实际上由两个主要元素组成:鼠标机制和称作鼠标驱动程序的内存驻留程序。鼠标驱动程序提供鱼鼠标通信所需的全部低级支持。此外,它自动维持鼠标光标位置和发现是否按下了某个键。一旦装入驱动程序,鼠标就...
recommend-type

C语言实现输入一个字符串后打印出该字符串中字符的所有排列

主要介绍了C语言实现输入一个字符串后打印出该字符串中字符的所有排列的方法,是数学中非常实用的排列算法,需要的朋友可以参考下
recommend-type

C语言实现歌手大奖赛计分程序

主要为大家详细介绍了C语言实现歌手大奖赛计分程序,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

C语言程序设计实现区号查询系统C语言程序设计实现

用C语言编程的区号查询系统,要求实现区号查询系统中,添加新记录、删除记录、显示记录信息、按城市查找信息和退出系统等功能。 ①录入有关城市的名称和区号。 ②显示所有城市的信息。 ③通过输入城市名称查找对应...
recommend-type

C语言实现二进制文件读写详解

文章先介绍函数,我们一共要用到三个函数,fopen,fread,fwrite。二进制读写的顺序是用fopen以二进制方式打开读写文件,然后使用fread和fwrite两个函数将数据写入二进制文件中。
recommend-type

架构师技术分享 支付宝高可用系统架构 共46页.pptx

支付宝高可用系统架构 支付宝高可用系统架构是支付宝核心支付平台的架构设计和系统升级的结果,旨在提供高可用、可伸缩、高性能的支付服务。该架构解决方案基于互联网与云计算技术,涵盖基础资源伸缩性、组件扩展性、系统平台稳定性、可伸缩、高可用的分布式事务处理与服务计算能力、弹性资源分配与访问管控、海量数据处理与计算能力、“适时”的数据处理与流转能力等多个方面。 1. 可伸缩、高可用的分布式事务处理与服务计算能力 支付宝系统架构设计了分布式事务处理与服务计算能力,能够处理高并发交易请求,确保系统的高可用性和高性能。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 2. 弹性资源分配与访问管控 支付宝系统架构设计了弹性资源分配与访问管控机制,能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。该机制还能够提供强大的访问管控功能,保护系统的安全和稳定性。 3. 海量数据处理与计算能力 支付宝系统架构设计了海量数据处理与计算能力,能够处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 4. “适时”的数据处理与流转能力 支付宝系统架构设计了“适时”的数据处理与流转能力,能够实时地处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 5. 安全、易用的开放支付应用开发平台 支付宝系统架构设计了安全、易用的开放支付应用开发平台,能够提供强大的支付应用开发能力,满足业务的快速增长需求。该平台基于互联网与云计算技术,能够弹性地扩展计算资源,确保系统的高可用性和高性能。 6. 架构设计理念 支付宝系统架构设计基于以下几点理念: * 可伸缩性:系统能够根据业务需求弹性地扩展计算资源,满足业务的快速增长需求。 * 高可用性:系统能够提供高可用性的支付服务,确保业务的连续性和稳定性。 * 弹性资源分配:系统能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。 * 安全性:系统能够提供强大的安全功能,保护系统的安全和稳定性。 7. 系统架构设计 支付宝系统架构设计了核心数据库集群、应用系统集群、IDC数据库交易系统账户系统V1LB、交易数据库账户数据库业务一致性等多个组件。这些组件能够提供高可用性的支付服务,确保业务的连续性和稳定性。 8. 业务活动管理器 支付宝系统架构设计了业务活动管理器,能够控制业务活动的一致性,确保业务的连续性和稳定性。该管理器能够登记业务活动中的操作,并在业务活动提交时确认所有的TCC型操作的confirm操作,在业务活动取消时调用所有TCC型操作的cancel操作。 9. 系统故障容忍度高 支付宝系统架构设计了高可用性的系统故障容忍度,能够在系统故障时快速恢复,确保业务的连续性和稳定性。该系统能够提供强大的故障容忍度,确保系统的安全和稳定性。 10. 系统性能指标 支付宝系统架构设计的性能指标包括: * 系统可用率:99.992% * 交易处理能力:1.5万/秒 * 支付处理能力:8000/秒(支付宝账户)、2400/秒(银行) * 系统处理能力:处理每天1.5亿+支付处理能力 支付宝高可用系统架构设计了一个高可用、高性能、可伸缩的支付系统,能够满足业务的快速增长需求,确保业务的连续性和稳定性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果

![Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果](https://file.51pptmoban.com/d/file/2018/10/25/7af02d99ef5aa8531366d5df41bec284.jpg) # 1. Matlab画图基础 Matlab是一款强大的科学计算和数据可视化软件,它提供了一系列用于创建和自定义图形的函数。本章将介绍Matlab画图的基础知识,包括创建画布、绘制线型以及设置基本属性。 ### 1.1 创建画布 在Matlab中创建画布可以使用`figure`函数。该函数创建一个新的图形窗口,并返回一个图形句柄。图形句柄用于对图形进
recommend-type

基于R软件一个实际例子,实现空间回归模型以及包括检验和模型选择(数据集不要加州的,附代码和详细步骤,以及数据)

本文将使用R软件和Boston房价数据集来实现空间回归模型,并进行检验和模型选择。 数据集介绍: Boston房价数据集是一个观测500个社区的房屋价格和其他16个变量的数据集。每个社区的数据包含了包括犯罪率、房产税率、学生-老师比例等特征,以及该社区的房价中位数。该数据集可用于探索房价与其他变量之间的关系,以及预测一个新社区的房价中位数。 数据集下载链接:https://archive.ics.uci.edu/ml/datasets/Housing 1. 导入数据集和必要的包 ```r library(spdep) # 空间依赖性包 library(ggplot2) # 可
recommend-type

WM9713 数据手册

WM9713 数据手册 WM9713 是一款高度集成的输入/输出设备,旨在为移动计算和通信应用提供支持。下面是 WM9713 的详细知识点: 1. 设备架构:WM9713 采用双 CODEC 运算架构,支持 Hi-Fi 立体声编解码功能通过 AC 链接口,同时还支持语音编解码功能通过 PCM 类型的同步串行端口(SSP)。 2. 音频功能:WM9713 提供了一个第三个 AUX DAC,可以用于生成监督音、铃声等不同采样率的音频信号,独立于主编解码器。 3. 触摸面板接口:WM9713 可以直接连接到 4 线或 5 线触摸面板,减少系统中的总组件数量。 4. 音频连接:WM9713 支持多种音频连接方式,包括立体声麦克风、立体声耳机和立体声扬声器。且可以使用无电容连接到耳机、扬声器和耳机,减少成本和 PCB 面积。 5. 模拟输入/输出:WM9713 提供了多个模拟输入和输出引脚,用于无缝集成与模拟连接的无线通信设备。 6. 设备控制:所有设备功能都可以通过寄存器访问来控制,实现了灵活的设备管理和配置。 7. 功率管理:WM9713 采用低功率设计,降低系统的功率消耗,提高系统的可靠性和续航能力。 8. 工业应用:WM9713 广泛应用于移动计算、通信、消费电子等领域,满足不同行业的需求和应用场景。 9. 技术参数:WM9713 的技术参数包括工作温度、供电电压、时钟频率、数据传输速率等,满足不同应用场景的需求。 10. 应用场景:WM9713 可以应用于智能手机、平板电脑、笔记本电脑、智能家居设备等移动计算和通信产品,满足不同行业的需求和应用场景。 WM9713 是一款功能强大、灵活性高的输入/输出设备,广泛应用于移动计算和通信领域,为不同行业的应用场景提供了可靠的解决方案。