baseline2=LogisticRegression() baseline2.fit(X_train,y_train) print(f'Train : { baseline2.score(X_train,y_train)}') model_eval(baseline2,X_test,y_test, bta = 1)
时间: 2024-01-25 19:04:46 浏览: 96
这段代码使用了逻辑回归(Logistic Regression)模型来训练和评估一个二元分类任务的性能。
首先,`baseline2=LogisticRegression()`创建了一个逻辑回归模型的实例。接着,`baseline2.fit(X_train,y_train)`使用训练集数据(X_train和y_train)来拟合逻辑回归模型。这将使模型学习如何根据输入特征(X_train)来预测目标变量(y_train)。
然后,`print(f'Train : { baseline2.score(X_train,y_train)}')`打印出训练集上的准确率。`score()`函数用于计算模型在给定数据集上的准确率,其中参数`X_train`和`y_train`分别是模型的输入特征和目标变量。
最后,`model_eval(baseline2,X_test,y_test, bta = 1)`调用一个名为`model_eval()`的函数,该函数用于评估模型在测试集数据(X_test和y_test)上的性能。其中,`bta`参数表示调整模型在不同类别之间权衡的参数,默认值为1。该函数将返回模型在测试集上的准确率、精确率、召回率和F1分数等性能指标。
阅读全文