def forward(self, x): output = self.conv1(x) output = F.relu(self.bn1(output)) output = self.conv2(output) output = self.bn2(output) return F.relu(x + output) ———————————————— 逐行解释
时间: 2023-08-29 09:09:26 浏览: 200
这段代码是 `RestNetBasicBlock` 类的前向传播函数 `forward`。下面逐行解释这段代码的作用:
1. `output = self.conv1(x)`:对输入 `x` 进行卷积操作,使用之前定义的 `conv1` 卷积层,得到输出 `output`。
2. `output = F.relu(self.bn1(output))`:对 `output` 进行批归一化操作,使用之前定义的 `bn1` 批归一化层,然后将结果通过 ReLU 激活函数进行激活。
3. `output = self.conv2(output)`:对上一步得到的结果 `output` 进行卷积操作,使用之前定义的 `conv2` 卷积层,得到新的输出 `output`。
4. `output = self.bn2(output)`:对新的输出 `output` 进行批归一化操作,使用之前定义的 `bn2` 批归一化层。
5. `return F.relu(x + output)`:将输入 `x` 与上一步得到的结果 `output` 进行元素级加法,并通过 ReLU 激活函数进行激活。最终返回该结果作为该层的输出。
这段代码的作用是定义了该残差块的前向传播过程,其中包含了两次卷积操作和两次批归一化操作,并将输入与输出进行残差连接后再经过激活函数处理。
相关问题
import torch import torch.nn as nn from torch.nn import functional as F class RestNetBasicBlock(nn.Module): def __init__(self, in_channels, out_channels, stride): super(RestNetBasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.bn2 = nn.BatchNorm2d(out_channels) def forward(self, x): output = self.conv1(x) output = F.relu(self.bn1(output)) output = self.conv2(output) output = self.bn2(output) return F.relu(x + output) ———————————————— 逐行解释以上代码
这段代码定义了一个名为`RestNetBasicBlock`的类,它是ResNet中的基本残差块。下面是对代码的逐行解释:
```python
import torch
import torch.nn as nn
from torch.nn import functional as F
```
首先导入了PyTorch库及其相关模块。
```python
class RestNetBasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super(RestNetBasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
```
接下来定义了一个名为`RestNetBasicBlock`的类,它继承自`nn.Module`类。构造函数`__init__`接受三个参数:`in_channels`表示输入特征图的通道数,`out_channels`表示输出特征图的通道数,`stride`表示卷积层的步长。
在构造函数中,定义了两个卷积层(`conv1`和`conv2`)和两个批归一化层(`bn1`和`bn2`)。这些层用于构建基本残差块。
```python
def forward(self, x):
output = self.conv1(x)
output = F.relu(self.bn1(output))
output = self.conv2(output)
output = self.bn2(output)
return F.relu(x + output)
```
`forward`方法定义了正向传播过程。给定输入`x`,首先通过第一个卷积层`conv1`进行卷积操作,得到`output`。然后将`output`通过批归一化层`bn1`和ReLU激活函数进行处理。
接下来,将处理后的特征图`output`再次通过第二个卷积层`conv2`进行卷积操作,得到最终的输出特征图。然后再将输出特征图通过批归一化层`bn2`进行处理。
最后,将输入特征图`x`与输出特征图相加,并通过ReLU激活函数进行处理,得到最终的输出。
这个基本残差块的设计遵循了ResNet的思想,通过跳跃连接将输入与输出相加,并使用ReLU激活函数来引入非线性。这样可以解决网络训练中的梯度消失问题,使得更深的网络能够更容易地训练和优化。
将以下代码改成残差卷积网络class EmbeddingOmniglot(nn.Module): ''' In this network the input image is supposed to be 28x28 ''' def __init__(self, args, emb_size): super(EmbeddingOmniglot, self).__init__() self.emb_size = emb_size self.nef = 64 self.args = args # input is 1 x 28 x 28 self.conv1 = nn.Conv2d(1, self.nef, 3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.nef) # state size. (nef) x 14 x 14 self.conv2 = nn.Conv2d(self.nef, self.nef, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(self.nef) # state size. (1.5*ndf) x 7 x 7 self.conv3 = nn.Conv2d(self.nef, self.nef, 3, bias=False) self.bn3 = nn.BatchNorm2d(self.nef) # state size. (2*ndf) x 5 x 5 self.conv4 = nn.Conv2d(self.nef, self.nef, 3, bias=False) self.bn4 = nn.BatchNorm2d(self.nef) # state size. (2*ndf) x 3 x 3 self.fc_last = nn.Linear(3 * 3 * self.nef, self.emb_size, bias=False) self.bn_last = nn.BatchNorm1d(self.emb_size) def forward(self, inputs): e1 = F.max_pool2d(self.bn1(self.conv1(inputs)), 2) x = F.leaky_relu(e1, 0.1, inplace=True) e2 = F.max_pool2d(self.bn2(self.conv2(x)), 2) x = F.leaky_relu(e2, 0.1, inplace=True) e3 = self.bn3(self.conv3(x)) x = F.leaky_relu(e3, 0.1, inplace=True) e4 = self.bn4(self.conv4(x)) x = F.leaky_relu(e4, 0.1, inplace=True) x = x.view(-1, 3 * 3 * self.nef) output = F.leaky_relu(self.bn_last(self.fc_last(x))) return [e1, e2, e3, output]
以下是将代码改写成使用残差卷积网络的示例代码:
```python
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += identity
out = self.relu(out)
return out
class EmbeddingOmniglot(nn.Module):
''' In this network the input image is supposed to be 28x28 '''
def __init__(self, args, emb_size):
super(EmbeddingOmniglot, self).__init__()
self.emb_size = emb_size
self.nef = 64
self.args = args
# input is 1 x 28 x 28
self.conv1 = nn.Conv2d(1, self.nef, 3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.nef)
# state size. (nef) x 14 x 14
self.residual_block1 = ResidualBlock(self.nef, self.nef)
self.residual_block2 = ResidualBlock(self.nef, self.nef)
# state size. (nef) x 14 x 14
self.residual_block3 = ResidualBlock(self.nef, self.nef)
self.residual_block4 = ResidualBlock(self.nef, self.nef)
# state size. (nef) x 14 x 14
# state size. (1.5*ndf) x 7 x 7
self.conv2 = nn.Conv2d(self.nef, self.nef, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(self.nef)
# state size. (2*ndf) x 5 x 5
self.conv3 = nn.Conv2d(self.nef, self.nef, 3, bias=False)
self.bn3 = nn.BatchNorm2d(self.nef)
# state size. (2*ndf) x 3 x 3
self.fc_last = nn.Linear(3 * 3 * self.nef, self.emb_size, bias=False)
self.bn_last = nn.BatchNorm1d(self.emb_size)
def forward(self, inputs):
x = self.conv1(inputs)
x = self.bn1(x)
x = F.relu(x)
x = self.residual_block1(x)
x = self.residual_block2(x)
e1 = F.max_pool2d(x, 2)
x = self.residual_block3(e1)
x = self.residual_block4(x)
e2 = F.max_pool2d(x, 2)
x = self.conv2(e2)
x = self.bn2(x)
x = F.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = F.relu(x)
x = x.view(-1, 3 * 3 * self.nef)
output = self.fc_last(x)
output = self.bn_last(output)
output = F.relu(output)
return [e1, e2, x, output]
```
这段代码定义了一个使用残差卷积网络的`EmbeddingOmniglot`类。其中`ResidualBlock`类表示残差块。你可以根据需要调整残差块的层数和卷积层的参数。在`forward`方法中,我们使用`ResidualBlock`类创建了残差块,并按照残差连接的方式连接它们。最后,我们对输出进行相应的处理,如最大池化、全连接层和批标准化等。注意,这里的输出顺序与原代码保持一致,但你也可以根据需要进行修改。
阅读全文