class ResGCN(torch.nn.Module): def __init__(self, in_channels, out_channels): super(ResGCN, self).__init__() self.conv1 = GCNConv(in_channels, out_channels) self.bn1 = BatchNorm(out_channels) self.conv2 = GCNConv(out_channels, out_channels) self.bn2 = BatchNorm(out_channels) self.shortcut = GCNConv(in_channels, out_channels) self.bn_shortcut = BatchNorm(out_channels) def forward(self, x, edge_index): # 残差结构 identity = x out = F.relu(self.bn1(self.conv1(x, edge_index))) out = self.bn2(self.conv2(out, edge_index)) shortcut = self.bn_shortcut(self.shortcut(identity, edge_index)) out += shortcut out = F.relu(out) return out 根据代码写出数学公式

时间: 2024-01-12 22:04:46 浏览: 27
首先定义符号: - $x$: 输入特征矩阵,维度为 $N \times D$,$N$ 表示节点数,$D$ 表示特征维度。 - $A$: 邻接矩阵,维度为 $N \times N$,表示节点之间的连接关系。 - $W$: 权重矩阵,维度为 $D \times D$,表示特征变换的参数。 - $b$: 偏置向量,维度为 $1 \times D$,表示特征变换的参数。 - $\sigma$: 激活函数,这里使用 ReLU。 则 ResGCN 的前向传播可以表示为: $$ \begin{aligned} &\text{identity} = x, \\ &h_1 = \sigma(\text{BN}(W_1 x A + b_1)), \\ &h_2 = \text{BN}(W_2 h_1 A + b_2), \\ &\text{shortcut} = \text{BN}(W_s x A + b_s), \\ &\text{output} = \sigma(h_2 + \text{shortcut}), \end{aligned} $$ 其中 $\text{BN}$ 表示 BatchNorm 操作,$W_1, W_2, W_s$ 分别是第一层 GCNConv、第二层 GCNConv 和 shortcut 的参数矩阵,$b_1, b_2, b_s$ 分别是对应的偏置向量。注意这里的 $A$ 是 GCNConv 的输入,即 $A$ 已经被加上自环,可以看 GCNConv 的定义。
相关问题

class Net4CNN(torch.nn.Module): def __init__(self, output_size, hidden_size, layers, channels, embedding_size): super().__init__() self.features = CNN4Backbone(hidden_size, channels, layers, max_pool_factor=4 // layers) self.classifier = torch.nn.Linear(embedding_size, output_size, bias=True) maml_init_(self.classifier) self.hidden_size = hidden_size def forward(self, x): x = self.features(x) x = self.classifier(x) return x 如何在这里添加ECA模块

要在这个模型中添加ECA模块,你需要在CNN4Backbone类中的卷积层后面添加ECA模块。下面是修改后的代码示例: ```python class Net4CNN(torch.nn.Module): def __init__(self, output_size, hidden_size, layers, channels, embedding_size): super().__init__() self.features = CNN4Backbone(hidden_size, channels, layers, max_pool_factor=4 // layers) self.eca = ECAModule(hidden_size) # 添加ECA模块 self.classifier = torch.nn.Linear(embedding_size, output_size, bias=True) maml_init_(self.classifier) self.hidden_size = hidden_size def forward(self, x): x = self.features(x) x = self.eca(x) # 使用ECA模块 x = self.classifier(x) return x ``` 在这个修改后的代码中,我们在Net4CNN类的构造函数中添加了一个ECA模块,并在forward()方法中使用了这个模块。请确保已经导入了相应的库和模块。 这样,你就将ECA模块添加到了Net4CNN模型中的卷积层后面,可以根据需要调整参数和模块的位置。

把这段代码里的location_embedding_dim去掉class my_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(my_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads location_embedding_dim = 0 self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features

这段代码里的location_embedding_dim是一个参数,它表示位置嵌入的维度。如果你想去掉它,可以把它的值设为0,然后在构造函数中把self.location_embedding_dim也设为0即可。具体来说,修改后的代码如下: ``` class my_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, filters_1, filters_2, dropout): super(my_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = 0 self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = self.GAT_2(features, edge_indices) return features ```

相关推荐

class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层

请详细解释以下代码:class BandedFourierLayer(nn.Module): def __init__(self, in_channels, out_channels, band, num_bands, length=201): super().__init__() self.length = length self.total_freqs = (self.length // 2) + 1 self.in_channels = in_channels self.out_channels = out_channels self.band = band # zero indexed self.num_bands = num_bands self.num_freqs = self.total_freqs // self.num_bands + (self.total_freqs % self.num_bands if self.band == self.num_bands - 1 else 0) self.start = self.band * (self.total_freqs // self.num_bands) self.end = self.start + self.num_freqs # case: from other frequencies self.weight = nn.Parameter(torch.empty((self.num_freqs, in_channels, out_channels), dtype=torch.cfloat)) self.bias = nn.Parameter(torch.empty((self.num_freqs, out_channels), dtype=torch.cfloat)) self.reset_parameters() def forward(self, input): # input - b t d b, t, _ = input.shape input_fft = fft.rfft(input, dim=1) output_fft = torch.zeros(b, t // 2 + 1, self.out_channels, device=input.device, dtype=torch.cfloat) output_fft[:, self.start:self.end] = self._forward(input_fft) return fft.irfft(output_fft, n=input.size(1), dim=1) def _forward(self, input): output = torch.einsum('bti,tio->bto', input[:, self.start:self.end], self.weight) return output + self.bias def reset_parameters(self) -> None: nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 nn.init.uniform_(self.bias, -bound, bound)

最新推荐

recommend-type

node-v4.1.2-linux-armv7l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

2_职业强国2.psd

2_职业强国2.psd
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。