scipy batch_szie = 24 两组欧拉角的mse

时间: 2024-04-06 13:32:42 浏览: 12
抱歉,您的问题不太清楚。scipy是一个Python科学计算库,它提供了许多工具用于数值计算、优化、统计等方面的问题。batch_size是深度学习中常用的一个超参数,用于指定每个训练批次中包含的样本数量。而欧拉角是用于描述物体在三维空间中旋转角度的一种方式。mse是均方误差的缩写,是用于评估模型预测结果与真实值之间的差异的一种常用指标。如果您能提供更具体的问题背景和上下文,我可以更好地回答您的问题。
相关问题

用scipy 求batch_szie = 24的两组欧拉角的mse

抱歉,我之前误解了您的问题。scipy库并不是用于求解深度学习中的MSE(均方误差)等问题的。如果想要求解MSE,可以使用NumPy库进行计算。 假设您有两个长度为24的欧拉角列表euler1和euler2,您可以使用以下代码计算它们之间的均方误差: ``` import numpy as np euler1 = [...] # 第一个长度为24的欧拉角列表 euler2 = [...] # 第二个长度为24的欧拉角列表 mse = np.mean(np.square(np.subtract(euler1, euler2))) ``` 其中,np.subtract()函数用于计算两个欧拉角列表的差,np.square()函数用于将欧拉角差的每个元素平方,np.mean()函数用于计算平方后的欧拉角差的均值,即均方误差。

scipy batch_szie = 24 旋转矩阵转欧拉角

Scipy 中没有提供直接将旋转矩阵批量转换为欧拉角的函数,但我们可以使用 Numpy 库来实现。以下是一个将批量旋转矩阵转换为欧拉角的示例代码,其中假设旋转矩阵的维度为 `(batch_size, 3, 3)`: ```python import numpy as np from scipy.spatial.transform import Rotation # 生成 batch_size 个随机旋转矩阵 batch_size = 24 R = np.random.rand(batch_size, 3, 3) # 将旋转矩阵转换为旋转对象 r = Rotation.from_matrix(R) # 将旋转对象转换为欧拉角 euler_angles = r.as_euler('xyz', degrees=True) print(euler_angles) ``` 在上面的代码中,我们首先使用 Numpy 库生成了 `batch_size` 个随机旋转矩阵。然后,我们使用 `Rotation.from_matrix` 将旋转矩阵转换为旋转对象 `r`,并使用 `r.as_euler` 将其转换为欧拉角。第一个参数 `'xyz'` 表示使用 x-y-z 轴顺序,第二个参数 `degrees=True` 表示将角度作为输出单位。 注意,以上代码中假设旋转矩阵的维度为 `(batch_size, 3, 3)`。如果旋转矩阵的维度为 `(3, 3, batch_size)`,则需要先对矩阵进行转置,例如: ```python R = np.random.rand(3, 3, batch_size) R = np.transpose(R, (2, 0, 1)) # 将旋转矩阵转换为旋转对象 r = Rotation.from_matrix(R) # 将旋转对象转换为欧拉角 euler_angles = r.as_euler('xyz', degrees=True) print(euler_angles) ```

相关推荐

解释以下这段代码:import tensorflow as tf gpus =tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_virtual_device_configuration(gpus[0],[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) #import scipy.io as sio import pickle import os,random import matplotlib.pyplot as plt #import scipy.stats from tensorflow import losses from tensorflow.keras import Model from tensorflow.keras import layers import matplotlib.pyplot as plt import tensorflow as tf import numpy as np #import scipy.io as sio #import scipy.stats import math import os import pdb from tensorflow import losses from model import ResNet18 from re_dataset_real import train_image1,train_label1,test_image1,test_label1,val_image1,val_label1 from re_dataset_imag import train_image2,train_label2,test_image2,test_label2,val_image2,val_label2 def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 def angle_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) img_ture=tf.atan2(y_true[1],y_true[0]) img_pred=tf.atan2(y_pred[1],y_pred[0]) return tf.keras.losses.MAE(img_ture,img_pred) def amp_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_phsical=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_phsical model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*25, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True,save_best_only=True)

import scipy.io import mne from mne.bem import make_watershed_bem # Load .mat files inner_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.inner_skull.mat') outer_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.outer_skull.mat') scalp = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.scalp.mat') print(inner_skull.keys()) # Assuming these .mat files contain triangulated surfaces, we will extract vertices and triangles # This might need adjustment based on the actual structure of your .mat files inner_skull_vertices = inner_skull['Vertices'] inner_skull_triangles = inner_skull['Faces'] outer_skull_vertices = outer_skull['Vertices'] outer_skull_triangles = outer_skull['Faces'] scalp_vertices = scalp['Vertices'] scalp_triangles = scalp['Faces'] # Prepare surfaces for MNE surfs = [ mne.bem.BEMSurface(inner_skull_vertices, inner_skull_triangles, sigma=0.01, id=4), # brain mne.bem.BEMSurface(outer_skull_vertices, outer_skull_triangles, sigma=0.016, id=3), # skull mne.bem.BEMSurface(scalp_vertices, scalp_triangles, sigma=0.33, id=5), # skin ] # Create BEM model model = mne.bem.BEM(surfs, conductivity=[0.3, 0.006, 0.3], is_sphere=False) model.plot(show=False) # Create BEM solution solution = mne.make_bem_solution(model) 运行代码时报错; Traceback (most recent call last): File "E:\pythonProject\MEG\头模型.py", line 24, in <module> mne.bem.BEMSurface(inner_skull_vertices, inner_skull_triangles, sigma=0.01, id=4), # brain AttributeError: module 'mne.bem' has no attribute 'BEMSurface'

最新推荐

recommend-type

setuptools-41.0.0-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Google Cloud Storage(使用gsutil下载)

Google Cloud CLI安装包GoogleCloudSDKInstaller.exe
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.