isomap_approx = scipy.sparse.csgraph.shortest_path(isomap_approx, directed=False) isomap_true = scipy.sparse.csgraph.shortest_path(isomap_true, directed=False) isomap_measured = scipy.sparse.csgraph.shortest_path(isomap_measured, directed=False)转matlab

时间: 2024-04-11 21:29:09 浏览: 13
在 MATLAB 中,你可以使用 `graphallshortestpaths` 函数来实现类似的功能。下面是将上述代码转换为 MATLAB 语法的方式: ```matlab isomap_approx = graphallshortestpaths(sparse(isomap_approx)); isomap_true = graphallshortestpaths(sparse(isomap_true)); isomap_measured = graphallshortestpaths(sparse(isomap_measured)); ``` 在 MATLAB 中,`graphallshortestpaths` 函数用于计算图中所有节点之间的最短路径。在这里,我们使用 `sparse` 函数将稀疏矩阵 `isomap_approx`、`isomap_true` 和 `isomap_measured` 转换为稀疏图,然后将其作为参数传递给 `graphallshortestpaths` 函数。结果会覆盖原始变量 `isomap_approx`、`isomap_true` 和 `isomap_measured`。请确保你已经加载了 MATLAB 中的 Graph Theory Toolbox,以便使用 `graphallshortestpaths` 函数。
相关问题

转成matlab: mds = manifold.MDS(n_components=2, max_iter=20000, eps=1e-9, dissimilarity="precomputed", n_jobs=1) pos_1 = mds.fit(isomap_approx).embedding_ pos_2 = mds.fit(isomap_true).embedding_ pos_3 = mds.fit(isomap_measured).embedding_

在 MATLAB 中,你可以使用 Multidimensional Scaling (MDS) 的 `mdscale` 函数来实现类似的功能。下面是将上述代码转换为 MATLAB 语法的方式: ```matlab options = statset('MaxIter', 20000, 'TolFun', 1e-9); pos_1 = mdscale(isomap_approx, 2, 'Options', options); pos_2 = mdscale(isomap_true, 2, 'Options', options); pos_3 = mdscale(isomap_measured, 2, 'Options', options); ``` 在 MATLAB 中,`mdscale` 函数用于执行多维缩放分析。第一个参数是距离矩阵,这里使用了 `isomap_approx`、`isomap_true` 和 `isomap_measured`。第二个参数 `2` 表示要将数据缩放到二维空间。`Options` 参数允许你设置最大迭代次数和收敛容差等选项,这里使用了 `statset` 函数创建了一个选项结构体 `options`。最后,结果保存在 `pos_1`、`pos_2` 和 `pos_3` 变量中,它们是包含了每个样本的二维坐标的矩阵。

n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise=noise) 对以上代码产生的数据不调用sklearn.manifold ,实现ISOMAP降维度

To implement ISOMAP for dimensionality reduction without using `sklearn.manifold` on the data generated by the above code, you can follow these steps: 1. Compute the pairwise Euclidean distance matrix between all data points in `X`. 2. For each point `x_i` in `X`, find its k-nearest neighbors based on the computed pairwise distance matrix. Here, `k` is a hyperparameter that determines the number of neighbors to consider. You can use `sklearn.neighbors` to find the nearest neighbors. 3. Build a graph where each point `x_i` is a node and edges are added between each point and its k-nearest neighbors. The edge weight can be set as the Euclidean distance between the two points. 4. Compute the shortest path distance between all pairs of nodes in the graph using Dijkstra's algorithm or Floyd-Warshall algorithm. 5. Apply classical multidimensional scaling (MDS) to embed the graph in a lower-dimensional space. MDS aims to preserve the pairwise distances between all points in the graph, so that the embedded points are as close as possible to the original points in terms of their pairwise relationships. You can use `sklearn.manifold.MDS` to perform MDS. Here's some sample code that implements the above steps: ``` from sklearn.neighbors import NearestNeighbors from scipy.spatial.distance import pdist, squareform from sklearn.manifold import MDS # Step 1: Compute pairwise Euclidean distance matrix dist_matrix = squareform(pdist(X, metric='euclidean')) # Step 2: Find k-nearest neighbors for each point k = 10 knn = NearestNeighbors(n_neighbors=k+1) # include self as a neighbor knn.fit(X) distances, indices = knn.kneighbors(X) # Step 3: Build graph with edges between each point and its k-nearest neighbors adj_matrix = np.zeros((n_samples, n_samples)) for i in range(n_samples): for j in indices[i]: if i != j: adj_matrix[i, j] = dist_matrix[i, j] adj_matrix[j, i] = dist_matrix[j, i] # Step 4: Compute shortest path distance between all pairs of nodes from scipy.sparse.csgraph import dijkstra shortest_paths = dijkstra(adj_matrix) # Step 5: Apply classical MDS to embed graph in lower-dimensional space embedding = MDS(n_components=2, dissimilarity='precomputed').fit_transform(shortest_paths) # Visualize embedded points plt.scatter(embedding[:,0], embedding[:,1], c=X[:,2], cmap=plt.cm.jet) plt.xlabel('Dimension 1') plt.ylabel('Dimension 2') plt.show() ``` Note that the above code embeds the data in a 2-dimensional space, but you can change `n_components` in the `MDS` class to embed the data in a different number of dimensions.

相关推荐

最新推荐

recommend-type

智慧酒店项目智能化系统汇报方案qy.pptx

智慧酒店项目智能化系统汇报方案qy.pptx
recommend-type

基于C语言编写的高并发Epoll服务器.zip

基于C语言编写的高并发Epoll服务器.zip
recommend-type

liba2ps1-4.14-bp156.5.5.ppc64le.rpm

liba2ps1-4.14-bp156.5.5.ppc64le
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Redis配置文件解读:实例解析redis.windows.conf

![Redis配置文件解读:实例解析redis.windows.conf](https://img-blog.csdn.net/20180726010513323?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3lhbmc1NzI2Njg1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. Redis配置文件概述 Redis配置文件是Redis服务器运行的配置文件,它包含了Redis服务器的各种配置参数。通过修改Redis配置文件,我们可以对Redis服务器的运行行为进行