跨层连接中Shortcut Connection连接的实现代码
时间: 2023-06-18 08:05:31 浏览: 100
基于tensorflow实现resnet网络.zip
在深度学习模型中,跨层连接通常使用Shortcut Connection实现。常见的Shortcut Connection有ResNet中的残差连接,DenseNet中的密集连接等。以下是使用Keras实现ResNet的残差连接的代码示例:
```python
from keras.layers import Input, Conv2D, BatchNormalization, Activation, Add
from keras.models import Model
def res_block(inputs, filters, kernel_size, strides):
# 定义残差块
x = Conv2D(filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filters, kernel_size=kernel_size, strides=1, padding='same')(x)
x = BatchNormalization()(x)
# Shortcut Connection
shortcut = Conv2D(filters, kernel_size=1, strides=strides, padding='same')(inputs)
shortcut = BatchNormalization()(shortcut)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
inputs = Input(shape=(224, 224, 3))
x = Conv2D(64, kernel_size=7, strides=2, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = res_block(x, filters=64, kernel_size=3, strides=1)
x = res_block(x, filters=64, kernel_size=3, strides=1)
x = res_block(x, filters=64, kernel_size=3, strides=1)
x = res_block(x, filters=128, kernel_size=3, strides=2)
x = res_block(x, filters=128, kernel_size=3, strides=1)
x = res_block(x, filters=128, kernel_size=3, strides=1)
x = res_block(x, filters=256, kernel_size=3, strides=2)
x = res_block(x, filters=256, kernel_size=3, strides=1)
x = res_block(x, filters=256, kernel_size=3, strides=1)
x = res_block(x, filters=512, kernel_size=3, strides=2)
x = res_block(x, filters=512, kernel_size=3, strides=1)
x = res_block(x, filters=512, kernel_size=3, strides=1)
x = AveragePooling2D(pool_size=7)(x)
x = Flatten()(x)
x = Dense(1000, activation='softmax')(x)
model = Model(inputs=inputs, outputs=x)
```
在上述代码中,函数`res_block`定义了一个残差块,包含两个卷积层和一个Shortcut Connection。其中,`Conv2D`表示卷积层,`BatchNormalization`表示批归一化,`Activation`表示激活函数,`Add`表示加法操作。在`res_block`函数中,通过卷积层和批归一化实现了两个卷积层,通过Shortcut Connection实现了跨层连接。
在模型的主体部分,先定义一个输入层`inputs`,然后通过一个卷积层、批归一化和激活函数实现了模型的第一层。接着,通过多个残差块按照顺序构建了模型的主体部分。最后,通过全局平均池化、展平和全连接层实现了模型的输出。
阅读全文