adv_x = fast_gradient_method()调用到gpu进行计算
时间: 2023-05-29 17:01:40 浏览: 127
是的,可以通过在函数调用时传递参数来将计算迁移到GPU上进行加速。例如,可以使用PyTorch的CUDA模块来实现此操作,通过将输入数据和模型参数传递给cuda()函数,并在后续的计算中使用.cuda()来指定GPU计算。其示例如下:
```
import torch
from torch.autograd import Variable
import numpy as np
from cleverhans_attack import fast_gradient_method
# Load data and model
X = np.load('data.npy')
y = np.load('labels.npy')
model = torch.load('model.pt')
# Convert data to PyTorch variables and move to GPU
X_var = Variable(torch.from_numpy(X).float())
y_var = Variable(torch.from_numpy(y).long())
X_var = X_var.cuda()
y_var = y_var.cuda()
# Move model to GPU
model.cuda()
# Call fast gradient method with GPU acceleration
epsilon = 0.1
adv_x = fast_gradient_method(model, X_var, y_var, epsilon, cuda=True)
# Move adversarial examples back to CPU
adv_x = adv_x.cpu().numpy()
```
阅读全文