%% Demo4 Bisection method clear all; close all; f = @(x) x.^3 - x - 1; %% 定义函数 df = @(x) 3*x.^2 - 1; C(x)=1\df; tol = 0.001; % 误差 max_iter = 100; % 最大迭代步数 a = 1; b = 1.5; % 左右边界 [x,k] = newton(f,df,a,max_iter,tol) %% Newton method function [x,k] = newton(f,C,x0,max_iter,tol) x = x0; for k = 1:max_iter x = x0 - C(x0)*f(x0); fprintf('k=%d, x = %.4f, fx = %.4f\n',... k, x, f(x)); if(abs(x-x0)<tol) break; end x0 = x; end end出错 hw3 (第 6 行) C(x)=1\df;
时间: 2023-11-25 20:07:54 浏览: 67
这段代码中,第六行出错了。在 MATLAB 中,定义函数时应该使用 "function" 关键字,而不是直接用赋值符号 "="。因此,将第六行修改为以下代码即可:
```matlab
function C = C(x)
C = 1/df(x);
end
```
这样就能正确定义 C(x) 函数了。
相关问题
%% Demo4 Bisection method clear all; close all; % 定义函数和导数 f = @(x) x^3 -3* x +2-Exp (x); df= @(x) 3x^2 - 3+Exp (x); dfx=df(x); % 设置初始点、精度和最大迭代次数 x0 = 1.5; tol = 1e-6; max_iter = 100; % 求解函数的根 [x, k] = newton(f, df, x0, tol, max_iter); fprintf('迭代次数: %d\n', k); fprintf('近似解: %.6f\n', x); %%定义C函数 function C = C(x) C(x) = 1/dfx; end function [x, k] = newton(f, C, x0, tol, max_iter) % 简化版牛顿法求解函数 f(x) = 0 的根% % 输入:% f: 函数句柄,表示需要求解根的函数% % df: 函数句柄,表示 f(x) 的导数% % x0: 初始迭代点% % tol: 迭代精度% % max_iter: 最大迭代次数% % 输出:% % x: 迭代得到的根% % k: 实际迭代次数% % 初始化 x = x0; k = 0; % 迭代 while k < max_iter fx = f(x); x = x - fxC; k = k + 1; if abs(fx) < tol break; end end end>> hw3 函数或变量 'x' 无法识别。 出错 hw3 (第 5 行) f(x) = @(x) x^3 -3* x +2-Exp (x);如何修改错误
在定义函数和导数时,df函数中的3x^2应该改为3*x^2,C函数中的等号应该改为赋值符号,即C(x) = 1/df(x)。同时,在调用newton函数时,应该将df改为C。修改后的代码如下:
%% Demo4 Bisection method
clear all; close all;
% 定义函数和导数
f = @(x) x^3 - 3*x + 2 - exp(x);
df = @(x) 3*x^2 - 3 + exp(x);
% 设置初始点、精度和最大迭代次数
x0 = 1.5;
tol = 1e-6;
max_iter = 100;
% 求解函数的根
[x, k] = newton(f, df, x0, tol, max_iter);
fprintf('迭代次数: %d\n', k);
fprintf('近似解: %.6f\n', x);
%% 定义C函数
function C = C(x)
C = 1/df(x);
end
function [x, k] = newton(f, C, x0, tol, max_iter)
% 简化版牛顿法求解函数 f(x) = 0 的根%
% 输入:
% f: 函数句柄,表示需要求解根的函数%
% C: 函数句柄,表示 f(x) 的导数的倒数%
% x0: 初始迭代点%
% tol: 迭代精度%
% max_iter: 最大迭代次数%
% 输出:
% x: 迭代得到的根%
% k: 实际迭代次数%
% 初始化
x = x0;
k = 0;
% 迭代
while k < max_iter
fx = f(x);
x = x - fx*C(x);
k = k + 1;
if abs(fx) < tol
break;
end
end
end
二分法求函数f(x)=x^2-3x+1的根的编程代码
二分法是一种数值解冑方法,通常用于寻找连续函数在一个区间内的零点。以下是使用Python编写的一个简单的二分查找函数来找到`f(x) = x^2 - 3x + 1`的零点(即解方程`0 = f(x)`)。假设我们对函数的行为有一定了解,知道它在某个区间内有一个实数根。
```python
def bisection(f, a, b, epsilon=1e-6):
"""
使用二分法寻找函数f在[a, b]范围内的零点
:param f: 函数的定义,输入x返回f(x)
:param a: 区间左端点
:param b: 区间右端点
:param epsilon: 精度阈值
:return: 零点估计值
"""
if f(a) * f(b) >= 0: # 如果区间端点的函数值同号,则不存在零点
return None
while b - a > epsilon:
c = (a + b) / 2 # 中点
if f(c) == 0: # 如果中点就是零点则返回
return c
elif f(a) * f(c) < 0: # 如果中点左边函数值异号,说明零点在中间
b = c
else: # 否则在右边
a = c
return round((a + b) / 2, 5) # 返回最接近的零点近似值
# 示例函数f(x)
def func(x):
return x**2 - 3*x + 1
# 调用二分法求解
root = bisection(func, 0, 4)
print(f"函数f(x)的根大约在 {root}附近")
阅读全文