int[][] DIRECTIONS = new int[][]{ { 1, 0},{-1, 0},{ 0, 1},{ 0, -1} };
时间: 2024-01-24 07:03:06 浏览: 87
这段代码定义了一个二维整数数组 `DIRECTIONS`,其中包含了四个方向的坐标偏移量。每个元素都是一个长度为2的一维数组,表示在二维平面上移动的方向。具体来说,`DIRECTIONS` 数组中的四个元素分别表示向右移动(1, 0)、向左移动(-1, 0)、向下移动(0, 1)、向上移动(0, -1)。这样,通过遍历 `DIRECTIONS` 数组,可以方便地在二维平面上进行上下左右的移动。
相关问题
Create a function pixel_flip(lst, orig_lst, budget, results, i=0) that uses recursion to generate all possible new unique images from the input orig_lst, following these rules: • The input lst is the current list being processed. Initially, this will be the same as orig_lst which is the original flattened image. • The input budget represents the number of pixels that can still be flipped. When the budget reaches 0, no more pixels can be flipped. • The input results is a list of resulting flattened images with flipped pixels. Initially, this will be an empty list. • The input i represents the index of the pixel being processed, by default set to 0, which is used to drive the recursive function towards its base case (i.e., initially starting from i=0). At termination of the function, the argument results should contain all possibilities of the input orig_lst by only flipping pixels from 0 to 1 under both the budget and the adjacency constraints. fill code at #TODO def pixel_flip(lst: list[int], orig_lst: list[int], budget: int, results: list, i: int = 0) -> None: """ Uses recursion to generate all possibilities of flipped arrays where a pixel was a 0 and there was an adjacent pixel with the value of 1. :param lst: 1D list of integers representing a flattened image . :param orig_lst: 1D list of integers representing the original flattened image. :param budget: Integer representing the number of pixels that can be flipped . :param results: List of 1D lists of integers representing all possibilities of flipped arrays, initially empty. :param i: Integer representing the index of the pixel in question. :return: None. """ #TODO def check_adjacent_for_one(flat_image: list[int], flat_pixel: int) -> bool: """ Checks if a pixel has an adjacent pixel with the value of 1. :param flat_image: 1D list of integers representing a flattened image . :param flat_pixel: Integer representing the index of the pixel in question. :return: Boolean. """ #TODO
Here's the code for the pixel_flip function and check_adjacent_for_one helper function:
```
def pixel_flip(lst: list[int], orig_lst: list[int], budget: int, results: list, i: int = 0) -> None:
"""
Uses recursion to generate all possibilities of flipped arrays where
a pixel was a 0 and there was an adjacent pixel with the value of 1.
:param lst: 1D list of integers representing a flattened image.
:param orig_lst: 1D list of integers representing the original flattened image.
:param budget: Integer representing the number of pixels that can be flipped.
:param results: List of 1D lists of integers representing all possibilities of flipped arrays, initially empty.
:param i: Integer representing the index of the pixel in question.
:return: None.
"""
if budget == 0:
# Base case: no more pixels can be flipped
results.append(lst)
return
if i >= len(lst):
# Base case: all pixels have been checked
return
if lst[i] == 0 and check_adjacent_for_one(orig_lst, i):
# Flip the current pixel and recurse with a lower budget
new_lst = lst.copy()
new_lst[i] = 1
pixel_flip(new_lst, orig_lst, budget - 1, results, i + 1)
# Recurse without flipping the current pixel
pixel_flip(lst, orig_lst, budget, results, i + 1)
def check_adjacent_for_one(flat_image: list[int], flat_pixel: int) -> bool:
"""
Checks if a pixel has an adjacent pixel with the value of 1.
:param flat_image: 1D list of integers representing a flattened image.
:param flat_pixel: Integer representing the index of the pixel in question.
:return: Boolean.
"""
row_size = int(len(flat_image)**0.5)
row = flat_pixel // row_size
col = flat_pixel % row_size
if row > 0 and flat_image[(row-1)*row_size+col] == 1:
return True
if row < row_size-1 and flat_image[(row+1)*row_size+col] == 1:
return True
if col > 0 and flat_image[row*row_size+(col-1)] == 1:
return True
if col < row_size-1 and flat_image[row*row_size+(col+1)] == 1:
return True
return False
```
The pixel_flip function takes in the current list being processed, orig_lst which is the original flattened image, budget representing the number of pixels that can still be flipped, results which is initially an empty list of resulting flattened images with flipped pixels, and i representing the index of the pixel being processed.
The function uses recursion to generate all possibilities of flipped arrays where a pixel was a 0 and there was an adjacent pixel with the value of 1. It first checks if the budget is 0 or if all pixels have been checked, and returns accordingly. If the current pixel is 0 and has an adjacent pixel with the value of 1, it flips the current pixel and recurses with a lower budget. Otherwise, it recurses without flipping the current pixel.
The check_adjacent_for_one helper function takes in the flattened image and the index of the pixel in question, and checks if the pixel has an adjacent pixel with the value of 1. It calculates the row and column of the pixel using integer division and modulus, and checks if the adjacent pixels in the vertical and horizontal directions have the value of 1. If any of the adjacent pixels have the value of 1, it returns True, otherwise it returns False.
{0, 0, 0, 0, 0}, {0, 1, 1, 1, 0}, {0, 1, 0, 1, 0}, {0, 1, 0, 1, 0}, {0, 0, 0, 0, 0}请用ARA*算法找到最短路径 用java实现 写注释
以下是使用ARA*算法找到最短路径的Java代码,附注释:
```java
import java.util.ArrayList;
import java.util.PriorityQueue;
import java.util.Random;
public class ARAStar {
static int[][] maze = {{0, 0, 0, 0, 0}, {0, 1, 1, 1, 0}, {0, 1, 0, 1, 0}, {0, 1, 0, 1, 0}, {0, 0, 0, 0, 0}}; //迷宫地图
static int[] start = {1, 1}; //起点坐标
static int[] end = {3, 3}; //终点坐标
static double w = 1.5; //初始权重
static double wDelta = 0.5; //权重递减量
static int maxIterations = 100; //最大迭代次数
static Random random = new Random(); //随机数生成器
static int[][] directions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; //四个方向的移动
//定义节点类
static class Node implements Comparable<Node> {
int[] pos; //节点位置
double g; //起点到该节点的实际距离
double h; //该节点到终点的估计距离
double f; //f = g + w * h,w为权重
//节点构造函数
public Node(int[] pos, double g, double h) {
this.pos = pos;
this.g = g;
this.h = h;
this.f = g + w * h;
}
//比较函数,用于PriorityQueue中的排序
@Override
public int compareTo(Node other) {
return Double.compare(f, other.f);
}
}
//计算两个节点之间的曼哈顿距离
static double manhattanDistance(int[] a, int[] b) {
return Math.abs(a[0] - b[0]) + Math.abs(a[1] - b[1]);
}
//判断一个节点是否在迷宫内且不是障碍物
static boolean isValid(int[] pos) {
int x = pos[0], y = pos[1];
return x >= 0 && x < maze.length && y >= 0 && y < maze[0].length && maze[x][y] == 0;
}
//计算起点到终点的最短路径
static ArrayList<int[]> shortestPath() {
PriorityQueue<Node> open = new PriorityQueue<>(); //开放列表
open.add(new Node(start, 0, manhattanDistance(start, end))); //将起点加入开放列表
ArrayList<int[]> closed = new ArrayList<>(); //关闭列表
Node goal = null; //终点节点
int iterations = 0; //迭代次数
while (!open.isEmpty() && iterations < maxIterations) { //当开放列表不为空且未超过最大迭代次数时
Node current = open.poll(); //取出开放列表中f值最小的节点
if (current.pos[0] == end[0] && current.pos[1] == end[1]) { //如果该节点是终点
goal = current; //将该节点设为终点节点
break; //跳出循环
}
closed.add(current.pos); //将该节点加入关闭列表
for (int[] direction : directions) { //遍历四个方向
int[] newPos = {current.pos[0] + direction[0], current.pos[1] + direction[1]}; //计算新位置
if (!isValid(newPos) || closed.contains(newPos)) { //如果新位置不合法或已在关闭列表中
continue; //跳过该方向
}
double newG = current.g + 1; //计算新的实际距离
double newH = manhattanDistance(newPos, end); //计算新的估计距离
Node neighbor = new Node(newPos, newG, newH); //创建邻居节点
if (!open.contains(neighbor)) { //如果邻居节点不在开放列表中
open.add(neighbor); //将邻居节点加入开放列表
} else { //如果邻居节点已在开放列表中
for (Node n : open) { //遍历开放列表
if (n.equals(neighbor) && neighbor.g < n.g) { //如果找到相同节点且新的实际距离更短
open.remove(n); //移除旧节点
open.add(neighbor); //将新节点加入开放列表
break; //跳出循环
}
}
}
}
iterations++; //迭代次数加1
}
ArrayList<int[]> path = new ArrayList<>(); //最短路径
if (goal != null) { //如果存在终点节点
Node current = goal; //从终点节点开始
while (current != null) { //一直向前直到起点
path.add(current.pos); //将节点加入最短路径
current = null;
for (int[] direction : directions) { //遍历四个方向
int[] newPos = {goal.pos[0] + direction[0], goal.pos[1] + direction[1]}; //计算新位置
if (!isValid(newPos) || closed.contains(newPos)) { //如果新位置不合法或已在关闭列表中
continue; //跳过该方向
}
double newG = goal.g + 1; //计算新的实际距离
double newH = manhattanDistance(newPos, end); //计算新的估计距离
Node neighbor = new Node(newPos, newG, newH); //创建邻居节点
if (open.contains(neighbor)) { //如果邻居节点在开放列表中
for (Node n : open) { //遍历开放列表
if (n.equals(neighbor)) { //如果找到相同节点
current = n; //将相同节点设为当前节点
goal = current; //将相同节点设为新的终点节点
break; //跳出循环
}
}
}
}
}
}
return path; //返回最短路径
}
//计算起点到终点的近似最短路径
static ArrayList<int[]> approximateShortestPath() {
ArrayList<int[]> path = new ArrayList<>(); //近似最短路径
while (w >= 1) { //当权重大于等于1时
ArrayList<int[]> tempPath = shortestPath(); //计算最短路径
if (tempPath.isEmpty()) { //如果不存在路径
break; //跳出循环
}
path = tempPath; //将最短路径设为近似最短路径
w -= wDelta; //减小权重
}
return path; //返回近似最短路径
}
//绘制迷宫和路径
static void draw() {
System.out.println("迷宫地图:");
for (int[] row : maze) {
for (int cell : row) {
if (cell == 0) {
System.out.print(" ");
} else {
System.out.print("██");
}
}
System.out.println();
}
ArrayList<int[]> path = approximateShortestPath(); //计算近似最短路径
System.out.println("近似最短路径:");
for (int[] pos : path) {
maze[pos[0]][pos[1]] = 2; //将路径标记为2
}
for (int[] row : maze) {
for (int cell : row) {
if (cell == 0) {
System.out.print(" ");
} else if (cell == 1) {
System.out.print("██");
} else {
System.out.print("░░");
}
}
System.out.println();
}
}
public static void main(String[] args) {
draw(); //绘制迷宫和路径
}
}
```
这段代码实现了ARA*算法找到最短路径,并用Java语言编写。其中,`maze`表示迷宫地图,0表示可以通过的位置,1表示障碍物;`start`表示起点坐标,`end`表示终点坐标;`w`表示初始权重,`wDelta`表示权重递减量;`maxIterations`表示最大迭代次数;`directions`表示四个方向的移动,上下左右分别为(-1,0),(1,0),(0,-1),(0,1)。
首先定义了一个`Node`类表示节点,包含位置、实际距离、估计距离和f值;然后定义了`manhattanDistance`函数计算曼哈顿距离,`isValid`函数判断一个节点是否合法,`shortestPath`函数计算起点到终点的最短路径,`approximateShortestPath`函数计算起点到终点的近似最短路径,`draw`函数绘制迷宫和路径。
在`shortestPath`函数中,使用了优先队列`open`表示开放列表,每次取出f值最小的节点进行扩展,遍历四个方向,计算新的实际距离和估计距离,如果新的节点不在开放列表中,则将其加入开放列表;如果新的节点已在开放列表中,则比较其实际距离,若新的实际距离更短,则将旧节点替换为新节点。
在`approximateShortestPath`函数中,从初始权重开始,每次计算最短路径,若不存在路径则跳出循环,否则将最短路径设为近似最短路径,并减小权重。
最后,在`draw`函数中,先绘制迷宫地图,然后计算近似最短路径,将路径标记为2,最后输出带有路径的迷宫地图。
阅读全文