pycolmap.IncrementalMapperOptions()

时间: 2023-06-21 22:04:18 浏览: 308
`pycolmap.IncrementalMapperOptions()` 是用于设置 Colmap 中的增量式三维重建的选项的类。它包含了一些参数,可以通过设置这些参数来调整增量式三维重建的行为,例如设置图像匹配算法、三维点云筛选阈值等。以下是一些常用的参数: - `min_num_matches`:最小匹配数,用于筛选匹配数量过少的图像。 - `min_track_length`:最小轨迹长度,用于筛选轨迹长度过短的点。 - `retriangulation_enabled`:是否启用重投影三角化,用于增量式重建中的点云筛选。 - `retriangulation_max_reproj_error`:重投影误差阈值,用于筛选重投影误差过大的点。 使用时,可以创建一个 `pycolmap.IncrementalMapperOptions()` 对象,并通过设置其属性来调整参数。例如: ``` options = pycolmap.IncrementalMapperOptions() options.min_num_matches = 30 options.min_track_length = 2 options.retriangulation_enabled = True options.retriangulation_max_reproj_error = 4.0 ``` 然后将该对象传递给 `pycolmap.IncrementalMapper()` 函数以启动增量式重建。
相关问题

mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3

这段代码是使用pycolmap库中的IncrementalMapperOptions类创建一个对象mapper_options。其中,extract_colors属性被设置为False,表示在执行增量式重建时不提取颜色信息。min_model_size属性被设置为3,表示只有当模型中至少有3个点时才进行增量式重建。这些选项可以根据需要进行修改。

详细解释一下这段代码,每一句都要进行注解:tgt = f'/kaggle/working/{dataset}-{scene}' # Generate a simple reconstruction with SIFT (https://en.wikipedia.org/wiki/Scale-invariant_feature_transform). if not os.path.isdir(tgt): os.makedirs(f'{tgt}/bundle') os.system(f'cp -r {src}/images {tgt}/images') database_path = f'{tgt}/database.db' sift_opt = pycolmap.SiftExtractionOptions() sift_opt.max_image_size = 1500 # Extract features at low resolution could significantly reduce the overall accuracy sift_opt.max_num_features = 8192 # Generally more features is better, even if behond a certain number it doesn't help incresing accuracy sift_opt.upright = True # rotation invariance device = 'cpu' t = time() pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True) print(len(os.listdir(f'{tgt}/images'))) print('TIMINGS --- Feature extraction', time() - t) t = time() matching_opt = pycolmap.SiftMatchingOptions() matching_opt.max_ratio = 0.85 # Ratio threshold significantly influence the performance of the feature extraction method. It varies depending on the local feature but also on the image type # matching_opt.max_distance = 0.7 matching_opt.cross_check = True matching_opt.max_error = 1.0 # The ransac error threshold could help to exclude less accurate tie points pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True) print('TIMINGS --- Feature matching', time() - t) t = time() mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3 # Sometimes you want to impose the first image pair for initialize the incremental reconstruction mapper_options.init_image_id1 = -1 mapper_options.init_image_id2 = -1 # Choose which interior will be refined during BA mapper_options.ba_refine_focal_length = True mapper_options.ba_refine_principal_point = True mapper_options.ba_refine_extra_params = True maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options) print('TIMINGS --- Mapping', time() - t)

这段代码主要是使用 PyCOLMAP 库实现对图像的特征提取、特征匹配和增量式三维重建。具体解释如下: ```tgt = f'/kaggle/working/{dataset}-{scene}'``` 定义了一个字符串变量 tgt,表示输出路径。 ```if not os.path.isdir(tgt):``` 如果输出路径不存在,则创建该路径。 ```os.makedirs(f'{tgt}/bundle')``` 在输出路径下创建子目录 bundle。 ```os.system(f'cp -r {src}/images {tgt}/images')``` 将源目录 src 中的 images 目录复制到输出路径下的 images 目录中。 ```database_path = f'{tgt}/database.db'``` 定义一个字符串变量 database_path,表示 PyCOLMAP 库中使用的数据库文件路径。 ```sift_opt = pycolmap.SiftExtractionOptions()``` 创建一个 SIFT 特征提取选项对象。 ```sift_opt.max_image_size = 1500``` 设置 SIFT 特征提取选项对象的最大图像尺寸为 1500×1500 像素。 ```sift_opt.max_num_features = 8192``` 设置 SIFT 特征提取选项对象的最大特征点数为 8192 个。 ```sift_opt.upright = True``` 设置 SIFT 特征提取选项对象的旋转不变性为 True,即不考虑图像旋转。 ```device = 'cpu'``` 定义一个字符串变量 device,表示计算设备类型。 ```pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True)``` 调用 PyCOLMAP 库中的 extract_features 函数,对输出路径下的图像进行 SIFT 特征提取,并将特征保存到数据库文件中。 ```print(len(os.listdir(f'{tgt}/images')))``` 输出输出路径下的图像数量。 ```print('TIMINGS --- Feature extraction', time() - t)``` 输出特征提取所花费的时间。 ```matching_opt = pycolmap.SiftMatchingOptions()``` 创建一个 SIFT 特征匹配选项对象。 ```matching_opt.max_ratio = 0.85``` 设置 SIFT 特征匹配选项对象的最大匹配比率为 0.85。 ```matching_opt.max_distance = 0.7``` 设置 SIFT 特征匹配选项对象的最大匹配距离为 0.7。 ```matching_opt.cross_check = True``` 设置 SIFT 特征匹配选项对象的交叉匹配为 True,即同时匹配两幅图像。 ```matching_opt.max_error = 1.0``` 设置 SIFT 特征匹配选项对象的最大误差为 1.0。 ```pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True)``` 调用 PyCOLMAP 库中的 match_exhaustive 函数,对数据库文件中的特征进行 SIFT 特征匹配,并将匹配结果保存到数据库文件中。 ```print('TIMINGS --- Feature matching', time() - t)``` 输出特征匹配所花费的时间。 ```mapper_options = pycolmap.IncrementalMapperOptions()``` 创建一个增量式三维重建选项对象。 ```mapper_options.extract_colors = False``` 设置增量式三维重建选项对象的颜色提取为 False,即不提取图像颜色信息。 ```mapper_options.min_model_size = 3``` 设置增量式三维重建选项对象的最小模型大小为 3。 ```mapper_options.init_image_id1 = -1``` 设置增量式三维重建选项对象的第一张图像的 ID 为 -1,表示不指定。 ```mapper_options.init_image_id2 = -1``` 设置增量式三维重建选项对象的第二张图像的 ID 为 -1,表示不指定。 ```mapper_options.ba_refine_focal_length = True``` 设置增量式三维重建选项对象的相机内参的优化为 True。 ```mapper_options.ba_refine_principal_point = True``` 设置增量式三维重建选项对象的相机主点的优化为 True。 ```mapper_options.ba_refine_extra_params = True``` 设置增量式三维重建选项对象的额外参数的优化为 True。 ```maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options)``` 调用 PyCOLMAP 库中的 incremental_mapping 函数,对数据库文件中的匹配结果进行增量式三维重建,并将重建结果保存到输出路径下的 bundle 目录中。 ```print('TIMINGS --- Mapping', time() - t)``` 输出增量式三维重建所花费的时间。
阅读全文

相关推荐

详细解释一下这段代码,每一句都要进行注解:for dataset in datasets: print(dataset) if dataset not in out_results: out_results[dataset] = {} for scene in data_dict[dataset]: print(scene) # Fail gently if the notebook has not been submitted and the test data is not populated. # You may want to run this on the training data in that case? img_dir = f'{src}/test/{dataset}/{scene}/images' if not os.path.exists(img_dir): continue # Wrap the meaty part in a try-except block. try: out_results[dataset][scene] = {} img_fnames = [f'{src}/test/{x}' for x in data_dict[dataset][scene]] print (f"Got {len(img_fnames)} images") feature_dir = f'featureout/{dataset}{scene}' if not os.path.isdir(feature_dir): os.makedirs(feature_dir, exist_ok=True) t=time() index_pairs = get_image_pairs_shortlist(img_fnames, sim_th = 0.5644583, # should be strict min_pairs = 33, # we select at least min_pairs PER IMAGE with biggest similarity exhaustive_if_less = 20, device=device) t=time() -t timings['shortlisting'].append(t) print (f'{len(index_pairs)}, pairs to match, {t:.4f} sec') gc.collect() t=time() if LOCAL_FEATURE != 'LoFTR': detect_features(img_fnames, 2048, feature_dir=feature_dir, upright=True, device=device, resize_small_edge_to=600 ) gc.collect() t=time() -t timings['feature_detection'].append(t) print(f'Features detected in {t:.4f} sec') t=time() match_features(img_fnames, index_pairs, feature_dir=feature_dir,device=device) else: match_loftr(img_fnames, index_pairs, feature_dir=feature_dir, device=device, resize_to=(600, 800)) t=time() -t timings['feature_matching'].append(t) print(f'Features matched in {t:.4f} sec') database_path = f'{feature_dir}/colmap.db' if os.path.isfile(database_path): os.remove(database_path) gc.collect() import_into_colmap(img_dir, feature_dir=feature_dir,database_path=database_path) output_path = f'{feature_dir}/colmap_rec_{LOCAL_FEATURE}' t=time() pycolmap.match_exhaustive(database_path) t=time() - t timings['RANSAC'].append(t) print(f'RANSAC in {t:.4f} sec')

最新推荐

recommend-type

(175797816)华南理工大学信号与系统Signal and Systems期末考试试卷及答案

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

深圳建设施工项目安全生产奖惩管理制度.docx

深圳建设施工项目安全生产奖惩管理制度
recommend-type

离散数学课后题答案+sdut往年试卷+复习提纲资料

离散数学课后题答案+sdut往年试卷+复习提纲资料
recommend-type

自考04741计算机网络原理真题及答案及课件

04741计算机网络原理 2018(尚德).pdf 13年试题(2套).pdf 2015年10月自考计算机网络原理04741试题及答案解析.docx 2021年4月自考04741计算机网络原理真题及答案.docx 2021年4月自考04741计算机网络原理试卷.bak.docx 计算机网络原理 课后题答案 全 李全龙版 自考04741.zip.zip 计算机网络原理课件 计算机网络原理课件.rar
recommend-type

C++实现rpc,全程手写

C++实现rpc,全程手写
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。