def sigmoid_derivative(self, x): return x * (1 - x)
时间: 2023-10-26 09:05:18 浏览: 132
这是一个用于计算Sigmoid函数导数的函数。Sigmoid函数是一个常用的激活函数,在神经网络中被广泛使用。它将任何实数映射到区间(0,1)上,其导数可以用Sigmoid函数的输出值来表示。具体而言,Sigmoid函数的导数可以表示为f(x) * (1 - f(x)),其中f(x)表示Sigmoid函数在x处的输出值。该函数的实现中,参数x应该是一个已经通过Sigmoid函数处理过的值。
相关问题
class NeuralNetwork: def __init__(self, n_inputs, n_hidden, n_outputs): self.n_inputs = n_inputs self.n_hidden = n_hidden self.n_outputs = n_outputs # 初始化权重和偏差 self.weights1 = np.random.randn(self.n_inputs, self.n_hidden) self.bias1 = np.zeros((1, self.n_hidden)) self.weights2 = np.random.randn(self.n_hidden, self.n_outputs) self.bias2 = np.zeros((1, self.n_outputs)) def sigmoid(self, z): return 1 / (1 + np.exp(-z)) def sigmoid_derivative(self, z): return self.sigmoid(z) * (1 - self.sigmoid(z)) def feedforward(self, X): # 计算隐藏层输出 self.z1 = np.dot(X, self.weights1) + self.bias1 self.a1 = self.sigmoid(self.z1) # 计算输出层输出 self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.a2 = self.sigmoid(self.z2) return self.a2 def backpropagation(self, X, y, output): # 计算输出层误差 error = output - y d_output = error * self.sigmoid_derivative(self.z2) # 计算隐藏层误差 error_hidden = d_output.dot(self.weights2.T) d_hidden = error_hidden * self.sigmoid_derivative(self.z1) # 更新权重和偏差 self.weights2 -= self.a1.T.dot(d_output) self.bias2 -= np.sum(d_output, axis=0, keepdims=True) self.weights1 -= X.T.dot(d_hidden) self.bias1 -= np.sum(d_hidden, axis=0) def train(self, X, y, n_epochs, learning_rate): for epoch in range(n_epochs): output = self.feedforward(X) self.backpropagation(X, y, output) def predict(self, X): output = self.feedforward(X) predictions = np.argmax(output, axis=1) return predictions
这是一个简单的神经网络实现,包括初始化权重和偏差、前向传播、反向传播、训练和预测。
神经网络的训练过程中,通常需要一些超参数的设置,如隐藏层的神经元数量、迭代次数、学习率等。
在这个实现中,隐藏层神经元数量为n_hidden,迭代次数为n_epochs,学习率为learning_rate。该神经网络使用sigmoid作为激活函数,使用梯度下降算法进行权重和偏差的更新。
在训练过程中,首先进行前向传播,得到输出值,然后进行反向传播,根据误差对权重和偏差进行调整。重复这个过程,直到达到预设的迭代次数,或者误差达到一定程度后停止训练。
在预测过程中,输入数据进行前向传播,得到输出值,根据输出值的大小确定预测结果。
这个实现比较简单,如果你想深入了解神经网络的原理和实现,可以参考相关的教材或者资料。
import numpy as np class BPNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.weights1 = np.random.randn(self.input_size, self.hidden_size) self.bias1 = np.zeros((1, self.hidden_size)) self.weights2 = np.random.randn(self.hidden_size, self.output_size) self.bias2 = np.zeros((1, self.output_size)) def forward(self, X): self.hidden_layer = np.dot(X, self.weights1) + self.bias1 self.activated_hidden_layer = self.sigmoid(self.hidden_layer) self.output_layer = np.dot(self.activated_hidden_layer, self.weights2) + self.bias2 self.activated_output_layer = self.sigmoid(self.output_layer) return self.activated_output_layer def sigmoid(self, s): return 1 / (1 + np.exp(-s)) def sigmoid_derivative(self, s): return s * (1 - s) def backward(self, X, y, o, learning_rate): self.error = y - o self.delta_output = self.error * self.sigmoid_derivative(o) self.error_hidden = self.delta_output.dot(self.weights2.T) self.delta_hidden = self.error_hidden * self.sigmoid_derivative(self.activated_hidden_layer) self.weights1 += X.T.dot(self.delta_hidden) * learning_rate self.bias1 += np.sum(self.delta_hidden, axis=0, keepdims=True) * learning_rate self.weights2 += self.activated_hidden_layer.T.dot(self.delta_output) * learning_rate self.bias2 += np.sum(self.delta_output, axis=0, keepdims=True) * learning_rate def train(self, X, y, learning_rate, epochs): for epoch in range(epochs): output = self.forward(X) self.backward(X, y, output, learning_rate) def predict(self, X): return self.forward(X) X = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) y = np.array([[0], [1], [1], [0]]) nn = BPNeuralNetwork(3, 4, 1) nn.train(X, y, 0.1, 10000) new_data = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0]]) print(nn.predict(new_data))
这是一个使用反向传播算法实现的简单的三层神经网络,输入层有3个节点,隐藏层有4个节点,输出层有1个节点。它的训练数据X是一个4x3的矩阵,y是一个4x1的矩阵。训练过程中,使用随机初始化的权重和偏置,对训练数据进行前向传播,计算输出值,在计算误差,并使用反向传播算法更新权重和偏置,最终得到一个可以进行二分类的神经网络模型。
在代码的最后,我们使用训练好的模型对新数据进行了预测,输出预测的结果。
阅读全文