pytorch 双向LSTM
时间: 2023-11-07 12:06:46 浏览: 148
基于pytorch从头实现了单向,多层,双向LSTM,给出了完整使用代码,并与torch自带的LSTM进行了对比实验
5星 · 资源好评率100%
PyTorch中双向LSTM模型可以使用torch.nn中的nn.LSTM模块,并设置参数bidirectional=True。例如:
```
import torch.nn as nn
class BiLSTM(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
super(BiLSTM, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_dim*2, output_dim)
def forward(self, x):
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_dim).to(device)
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_dim).to(device)
out, (hidden_state, cell_state) = self.lstm(x, (h0, c0))
# 将双向LSTM的输出沿最后一维拼接
final_hidden_state = torch.cat((hidden_state[-2,:,:], hidden_state[-1,:,:]), dim=1)
out = self.fc(final_hidden_state)
return out
```
阅读全文