c++实现c++实现计算由n个整数组成的序列的最长单调递增子序列的长度
时间: 2024-02-01 21:14:08 浏览: 74
最长递增子序列的另外一种C语言实现代码
4星 · 用户满意度95%
这个问题可以使用动态规划来解决。
我们定义一个数组 `dp`,其中 `dp[i]` 表示以第 `i` 个元素为结尾的最长单调递增子序列的长度。
初始时,每个元素自成一个长度为 1 的单调递增子序列,即 `dp[i] = 1`。
然后从 `i=1` 开始遍历整个序列,对于每个 `i`,再从 `j=0` 到 `i-1` 遍历所有小于 `i` 的元素,如果找到一个元素 `j` 比 `i` 小且 `dp[j]` 加上 1 能够使得以 `i` 结尾的子序列变得更长,则更新 `dp[i]` 为 `dp[j]+1`。
最终,最长单调递增子序列的长度就是 `dp` 数组中的最大值。
下面是 C++ 代码实现:
```cpp
#include <iostream>
#include <vector>
using namespace std;
int longestIncreasingSubsequence(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n, 1); // 初始值为 1,每个元素自成一个长度为 1 的单调递增子序列
int res = 1; // 最长单调递增子序列的长度至少为 1
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i] && dp[j] + 1 > dp[i]) {
dp[i] = dp[j] + 1;
}
}
res = max(res, dp[i]); // 更新最长单调递增子序列的长度
}
return res;
}
int main() {
vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};
cout << longestIncreasingSubsequence(nums) << endl; // 输出 4,即 [2, 3, 7, 101] 是最长单调递增子序列
return 0;
}
```
阅读全文