void tftp_task(void *pvParameters) { xSemaphore = xSemaphoreCreateBinary();//初始化信号量 if(xSemaphore == NULL) { return ; } tftp_server_init(); while (1) { /* 轮询驱动程序,获取任何未处理的帧 */ ethernetif_input(&fsl_netif0); xSemaphoreGive(xSemaphore);//发送信号量 } }err_t tftp_init(const struct tftp_context *ctx) { err_t ret; struct udp_pcb *pcb = udp_new_ip_type(IPADDR_TYPE_ANY); if (pcb == NULL) { return ERR_MEM; } ret = udp_bind(pcb, IP_ANY_TYPE, TFTP_PORT); if (ret != ERR_OK) { udp_remove(pcb); return ret; } tftp_state.handle = NULL; tftp_state.port = 0; tftp_state.ctx = ctx; tftp_state.timer = 0; tftp_state.last_data = NULL; tftp_state.upcb = pcb; if(xSemaphoreTake(xSemaphore,portMAX_DELAY) == pdTRUE) { udp_recv(pcb, recv, NULL); } return ERR_OK; }
时间: 2024-04-21 18:27:16 浏览: 157
这段代码中,tftp_task()函数是一个FreeRTOS任务,它会不断地轮询以太网接口,接收未处理的帧,并发送信号量以通知其他任务有数据包需要处理。tftp_init()函数则是TFTP协议的初始化函数,它会在创建UDP套接字之后等待信号量的释放,并调用udp_recv()函数等待接收数据包。
需要注意的是,这里的xSemaphore是一个二值信号量,用于通知其他任务有数据包需要处理。在tftp_init()函数中,需要先获取信号量才能接收数据包,否则会一直阻塞在xSemaphoreTake()函数处。另外,udp_recv()函数是一个阻塞函数,会一直等待接收到数据包才会返回,因此需要在单独的任务中调用它。
如果需要在接收到数据包之后创建新的任务进行处理,可以参考前面我给出的代码示例,将处理数据包的代码放到新任务中执行。
相关问题
#include "FreeRTOS.h"#include "task.h"#include "queue.h"#include "semphr.h"// TFTP 任务void tftp_task(void *pvParameters) { while (1) { // 处理 TFTP 请求 // ... }}// 网络任务void network_task(void *pvParameters) { while (1) { // 处理网络数据包 // ... }}// 文件系统任务void fs_task(void *pvParameters) { while (1) { // 管理文件系统 // ... }}int main(void) { // 创建 TFTP 任务 xTaskCreate(tftp_task, "TFTP", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL); // 创建网络任务 xTaskCreate(network_task, "Network", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL); // 创建文件系统任务 xTaskCreate(fs_task, "FS", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL); // 启动任务调度器 vTaskStartScheduler(); return 0;}这里的任务优先级需要改么
在这个例子中,三个任务的优先级都是tskIDLE_PRIORITY,即空闲任务的优先级。这意味着,这三个任务在运行时都具有相同的优先级,当它们同时处于就绪状态时,调度器将按照轮询的方式依次执行它们。
如果这三个任务在执行时具有不同的重要性或紧急性,那么它们的优先级应该有所不同。例如,如果TFTP任务需要更高的优先级以确保及时响应客户端请求,可以将其优先级设置为较高的值。同样地,如果文件系统任务需要更高的优先级以确保文件系统的正确性,也可以将其优先级设置为较高的值。
因此,如果这三个任务具有不同的重要性或紧急性,那么它们的优先级应该根据实际需求进行调整。如果它们的重要性或紧急性相同,则可以使用相同的优先级。
void tftp_task(void *pvParameters) { PRINTF("2\r\n"); tftp_server_init(); while (1) { /* 轮询驱动程序,获取任何未处理的帧 */ ethernetif_input(&fsl_netif0); // sys_check_timeouts(); /* 处理所有核心协议的系统超时 */ } }err_t tftp_init(const struct tftp_context *ctx) { err_t ret; struct udp_pcb *pcb = udp_new_ip_type(IPADDR_TYPE_ANY); if (pcb == NULL) { return ERR_MEM; } ret = udp_bind(pcb, IP_ANY_TYPE, TFTP_PORT); if (ret != ERR_OK) { udp_remove(pcb); return ret; } tftp_state.handle = NULL; tftp_state.port = 0; tftp_state.ctx = ctx; tftp_state.timer = 0; tftp_state.last_data = NULL; tftp_state.upcb = pcb; udp_recv(pcb, recv, NULL); return ERR_OK; }可以这样子使用么
您提供的代码中,在 `tftp_init()` 函数中使用 `udp_recv(pcb, recv, NULL)` 函数来注册了UDP数据包接收的回调函数 `recv()`,这样当收到UDP数据包时,就会调用 `recv()` 函数来处理数据包。在 `tftp_task()` 函数中通过轮询驱动程序来接收未处理的数据包。
这种方式是可行的,但是可能会造成CPU过度占用的问题。因为在 `tftp_task()` 函数中,通过不断轮询来接收未处理的数据包,如果有大量数据包需要处理,那么会占用大量的CPU资源,导致其他任务无法正常执行。
为了避免这种情况的发生,建议使用lwIP的事件机制或者FreeRTOS的任务通知机制等方式来通知处理任务有数据包需要处理,这样可以避免CPU过度占用的问题。
阅读全文