出现这段报错怎么处理NameError: name 'num_iterations' is not defined
时间: 2023-10-08 11:13:01 浏览: 105
这个错误是因为在代码中使用了变量 `num_iterations`,但是该变量没有被定义。要解决这个错误,需要在代码中定义变量 `num_iterations`。你可以通过在代码中添加以下行来定义变量 `num_iterations`:
```
num_iterations = 1000 # 或者你想要的迭代次数
```
请注意,变量名称和值可以根据你的需求进行更改。
相关问题
class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output
这段代码定义了一个名为NeuralNetwork的类,包含了类的构造函数__init__()和一些其他的方法。该类的构造函数__init__()接受一个参数layers_structure,表示神经网络的结构,即每一层的神经元数量。该类还包含了一些其他的属性和方法,包括:
- layers_num: 表示神经网络的层数
- param_layers_num: 表示神经网络的参数层数,即除去输入层和输出层的层数
- learning_rate: 表示神经网络的学习率
- num_iterations: 表示神经网络的迭代次数
- x: 表示输入数据
- y: 表示期望输出数据
- w: 表示神经网络的权重参数
- b: 表示神经网络的偏置参数
- costs: 表示每次迭代的损失值
- print_cost: 表示是否打印每次迭代的损失值
该类还包含了一些其他方法,包括set_learning_rate()、set_num_iterations()和set_xy()等,用于设置神经网络的学习率、迭代次数和输入数据等。这些方法可以在实例化该类后进行调用。
planning_time_limit: 10.0 max_iterations: 200 max_iterations_after_collision_free: 5 smoothness_cost_weight: 0.1 obstacle_cost_weight: 1.0 learning_rate: 0.01 smoothness_cost_velocity: 0.0 smoothness_cost_acceleration: 1.0 smoothness_cost_jerk: 0.0 ridge_factor: 0.01 use_pseudo_inverse: false pseudo_inverse_ridge_factor: 1e-4 joint_update_limit: 0.1 collision_clearence: 0.2 collision_threshold: 0.07 use_stochastic_descent: true enable_failure_recovery: true max_recovery_attempts: 5
这些参数似乎是机器人路径规划中使用的参数。其中,planning_time_limit表示规划时间限制;max_iterations表示最大迭代次数;smoothness_cost_weight表示平滑度代价权重;obstacle_cost_weight表示障碍代价权重;learning_rate表示学习率;smoothness_cost_velocity、smoothness_cost_acceleration和smoothness_cost_jerk表示平滑度代价的不同阶数;ridge_factor表示岭回归因子;use_pseudo_inverse表示是否使用伪逆;joint_update_limit表示关节更新限制;collision_clearence表示碰撞间隙;collision_threshold表示碰撞阈值;use_stochastic_descent表示是否使用随机下降;enable_failure_recovery表示是否开启失败恢复;max_recovery_attempts表示最大恢复尝试次数。
阅读全文