使用你上面的代码 renderWindow->SetWindowId(reinterpret_cast<void*>(hWnd));中的hWnd,是否应该放在全局变量

时间: 2024-04-19 17:26:11 浏览: 15
在使用VTK嵌入到Win32窗口时,将Win32窗口的句柄(hWnd)存储为全局变量是一种常见的做法,这样可以在不同的函数之间共享并使用该句柄。 在示例代码中,将hWnd存储在全局变量中是为了在WndProc回调函数中使用它。具体而言,在WM_PAINT消息中,需要将Win32窗口的句柄传递给VTK渲染窗口的SetWindowId方法,以便VTK知道在哪个窗口中渲染。 因此,将hWnd作为全局变量存储,可以确保在不同的函数之间共享这个句柄,并在需要时进行使用。请确保在全局变量存储hWnd之前,在InitInstance函数中正确地创建和初始化了Win32窗口。 希望这样解答了您的问题!如果还有其他疑问,请随时提问。
相关问题

你上面说的 renderWindow->SetWindowId(reinterpret_cast<void*>(hWnd));,是将win32窗口 放在了vtk窗口里了吧. 我是要把vtk窗口 放在win32窗口里

非常抱歉,我之前的回答有误。您是正确的,根据您的需求是将VTK渲染窗口嵌入到Win32窗口中。以下是针对您的需求的修改建议: 1. 在InitInstance函数中创建vtkRenderWindow对象,并将其与Win32窗口关联起来: ```cpp vtkSmartPointer<vtkRenderWindow> renderWindow = vtkSmartPointer<vtkRenderWindow>::New(); renderWindow->SetParentId(reinterpret_cast<void*>(hWnd)); ``` 2. 在渲染窗口的大小设置之前,设置渲染窗口的交互器(vtkRenderWindowInteractor): ```cpp vtkSmartPointer<vtkRenderWindowInteractor> iren = vtkSmartPointer<vtkRenderWindowInteractor>::New(); iren->SetRenderWindow(renderWindow); ``` 3. 在创建并设置好渲染器(vtkRenderer)后,将渲染器添加到渲染窗口中: ```cpp renderWindow->AddRenderer(ren1); ``` 4. 在ShowWindow和UpdateWindow之后,将渲染窗口的大小设置为Win32窗口的客户区大小: ```cpp RECT rect; GetClientRect(hWnd, &rect); renderWindow->SetSize(rect.right - rect.left, rect.bottom - rect.top); ``` 5. 在Render方法调用之前,确保已经正确设置了渲染器和其他VTK对象。 ```cpp renderWindow->Render(); ``` 请注意,在调用Render方法之前,确保已经正确设置了渲染器和其他VTK对象。 希望这次的回答能够帮助您实现将VTK渲染窗口嵌入到Win32窗口中。如果问题仍然存在,请提供更多关于您的代码和环境的信息,以便我能够更具体地帮助您。

下面代码 win32窗口可以加载进来,但界面全是黑的,什么也不显示: BOOL InitInstance(HINSTANCE hInstance, int nCmdShow) { hInst = hInstance; // 将实例句柄存储在全局变量中 hWnd = CreateWindowW(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, nullptr, nullptr, hInstance, nullptr); if (!hWnd) { return FALSE; } vtkConeSource* cone = vtkConeSource::New(); cone->SetHeight(3.0); cone->SetRadius(1.0); cone->SetResolution(10); vtkPolyDataMapper* coneMapper = vtkPolyDataMapper::New(); coneMapper->SetInputConnection(cone->GetOutputPort()); vtkActor* coneActor = vtkActor::New(); coneActor->SetMapper(coneMapper); vtkRenderer* ren1 = vtkRenderer::New(); ren1->AddActor(coneActor); ren1->SetBackground(0.1, 0.2, 0.4); renderWindow->AddRenderer(ren1); // renderWindow->SetSize(600, 600); vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New(); iren->SetRenderWindow(renderWindow); vtkInteractorStyleTrackballCamera* style = vtkInteractorStyleTrackballCamera::New(); iren->SetInteractorStyle(style); vtkBoxWidget* boxWidget = vtkBoxWidget::New(); boxWidget->SetInteractor(iren); boxWidget->SetPlaceFactor(1.25); boxWidget->SetProp3D(coneActor); boxWidget->PlaceWidget(); vtkMyCallback* callback = vtkMyCallback::New(); boxWidget->AddObserver(vtkCommand::InteractionEvent, callback); boxWidget->On(); iren->Initialize(); iren->Start(); ShowWindow(hWnd, nCmdShow); UpdateWindow(hWnd); // 在Win32窗口中绘制VTK渲染窗口 renderWindow->SetWindowId(reinterpret_cast<void*>(hWnd)); renderWindow->Render(); return TRUE; }

根据您提供的代码,我注意到一些问题可能导致界面全黑,无法显示VTK渲染结果: 1. 渲染窗口(renderWindow)没有正确创建和初始化:在代码中,我没有看到您创建和初始化renderWindow对象的代码。请确保您在InitInstance函数中创建并初始化vtkWin32OpenGLRenderWindow对象,类似于以下代码: ```cpp vtkSmartPointer<vtkWin32OpenGLRenderWindow> renderWindow = vtkSmartPointer<vtkWin32OpenGLRenderWindow>::New(); renderWindow->SetParentId(reinterpret_cast<void*>(hWnd)); ``` 2. 渲染器(ren1)没有正确设置背景颜色:在渲染器中设置背景颜色非常重要,否则画面可能会全黑。请确保在创建并添加渲染器到renderWindow之后,设置正确的背景颜色,例如: ```cpp ren1->SetBackground(0.1, 0.2, 0.4); ``` 3. 渲染窗口没有调用Render方法进行渲染:在创建并设置好渲染器后,确保调用renderWindow的Render方法进行渲染,以便在Win32窗口中显示VTK渲染结果: ```cpp renderWindow->Render(); ``` 请注意,在调用renderWindow的Render方法之前,确保已经正确设置了渲染器和其他VTK对象。 希望这些建议能够帮助您解决问题。如果问题仍然存在,请提供更多关于您的代码和环境的信息,以便我能够更具体地帮助您。

相关推荐

下面代码 为什么vtk窗口为黑色,没有任何图像显示: int main() { //创建vtkConeSource实例. 该实例是可视化管道(一个源过程对象). 它产生数据(输出类型为vtkPolyData),其他过滤器可以对其进行处理 vtkConeSource* cone = vtkConeSource::New(); cone->SetHeight(3.0); cone->SetRadius(1.0); cone->SetResolution(10); //创建vtkPolyDataMapper,将多边形数据映射到图形基元中. 将圆锥体源的输出 连接到此映射器的输入 vtkPolyDataMapper* coneMapper = vtkPolyDataMapper::New(); coneMapper->SetInputConnection(cone->GetOutputPort()); //创建Actor来表示圆锥体 vtkActor* coneActor = vtkActor::New(); coneActor->SetMapper(coneMapper); //创建渲染器并为其指定Actor. 渲染器就像视口,负责绘制演员 vtkRenderer* ren1 = vtkRenderer::New(); ren1->AddActor(coneActor); ren1->SetBackground(1.0, 1.0, 1.0); ren1->SetActiveCamera(ren1->GetActiveCamera()); ren1->ResetCamera(); //创建了将显示在屏幕上的渲染窗口. 使用AddRenderer将渲染器放入渲染窗口 //vtkRenderWindow* renderWindow = vtkRenderWindow::New(); vtkWin32OpenGLRenderWindow* renderWindow = vtkWin32OpenGLRenderWindow::New(); renderWindow->SetSize(500, 500); renderWindow->AddRenderer(ren1); //tkRenderWindowInteractior类监视事件. 这些事件被翻译成VTK理解的事件调用 vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New(); iren->SetRenderWindow(renderWindow); //vtkRenderWindowInteractior类监视事件(如鼠标). 这些事件被翻译成VTK理解的事件调用 vtkInteractorStyleTrackballCamera* style = vtkInteractorStyleTrackballCamera::New(); iren->SetInteractorStyle(style); //使用vtkBoxWidget来转换底层的coneAactor(通过操纵其变换矩阵) vtkBoxWidget* boxWidget = vtkBoxWidget::New(); boxWidget->SetInteractor(iren); boxWidget->SetPlaceFactor(1.25); //放置互动器。3D小部件的输入用于最初定位和缩放小部件 boxWidget->SetProp3D(coneActor); boxWidget->PlaceWidget(); vtkMyCallback* callback = vtkMyCallback::New(); boxWidget->AddObserver(vtkCommand::InteractionEvent, callback); //户按下“i”键可以使3D小部件栩栩如生. 可以户按下“i”键可以使3D小部件栩栩如生 boxWidget->On(); renderWindow->Render(); //启动事件循环 iren->Initialize(); iren->Start(); cone->Delete(); coneMapper->Delete(); coneActor->Delete(); callback->Delete(); boxWidget->Delete(); ren1->Delete(); renderWindow->Delete(); iren->Delete(); style->Delete(); return 0; }

void QtWidgetsApplication2::pt_clicked(QString data1, QString data2) { pcl::console::TicToc time; // --------------------------------读取点云------------------------------------ pcl::PointCloud::Ptr cloud(new pcl::PointCloud); if (pcl::io::loadPCDFile("opened_cloud.pcd", *cloud) == -1) { PCL_ERROR("Cloudn't read file!"); } //cout << "滤波前点的个数为:" << cloud->size() << endl; // --------------------------------直通滤波------------------------------------ float a = data1.toFloat(); float b = data2.toFloat(); pcl::PointCloud::Ptr filtered(new pcl::PointCloud); std::string fv = "z"; // 滤波字段 filtered = pcl_filter_passthrough(cloud, a, b, fv); //cout << "直通滤波用时:" << time.toc() << " ms" << endl; pcl::io::savePCDFileASCII("opened_cloud.pcd", *filtered); ui.textBrowser->clear(); QString Pointsize = QString("%1").arg(cloud->points.size()); ui.textBrowser->insertPlainText(QStringLiteral("点云数量:") + Pointsize); QString Pointsize1 = QString("%1").arg(filtered->points.size()); ui.textBrowser->insertPlainText(QStringLiteral("\n滤波后点云数量:") + Pointsize1); auto renderer2 = vtkSmartPointer<vtkRenderer>::New(); auto renderWindow2 = vtkSmartPointer<vtkGenericOpenGLRenderWindow>::New(); renderWindow2->AddRenderer(renderer2); viewer.reset(new pcl::visualization::PCLVisualizer(renderer2, renderWindow2, "viewer", false)); ui.openGLWidget->setRenderWindow(viewer->getRenderWindow()); viewer->setupInteractor(ui.openGLWidget->interactor(), ui.openGLWidget->renderWindow()); viewer->setBackgroundColor(0, 0, 0); //设置背景 pcl::visualization::PointCloudColorHandlerGenericField fildColor(filtered, "z"); viewer->addPointCloud(filtered, fildColor, "sample cloud"); viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "sample cloud"); viewer->resetCamera(); update(); };这段代码存在内存泄漏的问题

最新推荐

recommend-type

WX小程序源码小游戏类

WX小程序源码小游戏类提取方式是百度网盘分享地址
recommend-type

grpcio-1.47.2-cp310-cp310-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。