np.squeeze(out)
时间: 2024-06-13 14:09:53 浏览: 149
`np.squeeze(out)`函数用于从数组的形状中删除单维度条目,即将shape中为1的维度去掉。如果数组的形状为(1,n),则将其转换为(n,)。如果数组的形状为(m,1,n),则将其转换为(m,n)。如果数组的形状为(m,1,n,1),则将其转换为(m,n)。下面是一个例子:
```python
import numpy as np
# 定义一个形状为(1,2,1,3,1)的数组
a = np.array([[[[1], [2], [3]]], [[[4], [5], [6]]]])
# 使用squeeze函数去掉单维度条目
b = np.squeeze(a)
# 输出去掉单维度条目后的数组及其形状
print(b)
print(b.shape)
```
输出结果为:
```
[[1 2 3]
[4 5 6]]
(2, 3)
```
相关问题
outputs = np.squeeze(Out.data.cpu().numpy()).astype(np.float32)
这行代码的作用是将PyTorch张量(tensor)Out转换为NumPy数组(numpy array),然后压缩成一个维度,最后将数据类型转换为32位浮点数(float32)。具体来说,np.squeeze()函数可以去除数组中维度为1的维度,Out.data.cpu()表示将Out从GPU移动到CPU,.numpy()表示将其转换为NumPy数组。astype(np.float32)则是将数组转换为32位浮点数类型。这个操作通常用于从PyTorch张量中获取数据并进行后续处理,比如可视化或保存到文件中。
out=np.squeeze(out,axis=0)
This line of code removes any single-dimensional entries from the shape of a NumPy array (i.e. any dimensions with size 1). The 'axis=0' argument specifies that it should only remove single-dimensional entries along the first axis of the array.
For example, if the input array has shape (1, 3, 1, 4), then the 'squeeze' operation will remove the first and third dimensions and return an array with shape (3, 4).
In this case, the 'out' array is being squeezed along the first axis, which typically represents the batch size in deep learning applications. This suggests that the original array had a batch dimension of size 1, which is being removed to obtain a tensor with shape (H, W, C), where H, W, and C represent the height, width, and number of channels, respectively.
阅读全文