X = np.hstack((X1_new, X2_new, X3_new, X4_new, X5_new, X6_new, X7_new, X8_new, X9_new, X10_new, X11_new, X12_new, X13_new, X14_new, X15_new)) y = data['target'],如何做数据可视化

时间: 2023-09-18 10:15:56 浏览: 36
数据可视化可以使用 Python 中的 Matplotlib 和 Seaborn 库进行绘制。具体步骤如下: 1. 导入需要使用的库和数据 ```python import numpy as np import matplotlib.pyplot as plt import seaborn as sns X = np.hstack((X1_new, X2_new, X3_new, X4_new, X5_new, X6_new, X7_new, X8_new, X9_new, X10_new, X11_new, X12_new, X13_new, X14_new, X15_new)) y = data['target'] ``` 2. 绘制散点图 ```python plt.scatter(X[:, 0], y) plt.xlabel('X1_new') plt.ylabel('Target') plt.show() ``` 这里以第一列数据 `X1_new` 为 x 轴,目标值 `target` 为 y 轴,绘制散点图。 3. 绘制线性回归拟合曲线 ```python sns.regplot(x=X[:, 0], y=y) plt.xlabel('X1_new') plt.ylabel('Target') plt.show() ``` 这里使用 Seaborn 库的 `regplot()` 函数绘制线性回归拟合曲线。 可以根据具体需要,绘制多种类型、多个变量的可视化图表。
相关问题

pca=PCA(n_components=1) pca.fit(X1_scaled) X1_pca=pca.transform(X1_scaled) pca.fit(X2_scaled) X2_pca=pca.transform(X1_scaled) pca.fit(X3_scaled) X3_pca=pca.transform(X3_scaled) pca.fit(X4_scaled) X4_pca=pca.transform(X4_scaled) pca.fit(X5_scaled) X5_pca=pca.transform(X5_scaled) pca.fit(X6_scaled) X6_pca=pca.transform(X6_scaled) pca.fit(X7_scaled) X7_pca=pca.transform(X7_scaled) pca.fit(X8_scaled) X8_pca=pca.transform(X8_scaled) pca.fit(X9_scaled) X9_pca=pca.transform(X9_scaled) pca.fit(X10_scaled) X10_pca=pca.transform(X10_scaled) pca.fit(X11_scaled) X11_pca=pca.transform(X11_scaled) pca.fit(X12_scaled) X12_pca=pca.transform(X12_scaled) pca.fit(X13_scaled) X13_pca=pca.transform(X13_scaled) pca.fit(X14_scaled) X14_pca=pca.transform(X14_scaled) pca.fit(X15_scaled) X15_pca=pca.transform(X15_scaled) #生成变量 X1_new = X1_pca X2_new = X2_pca X3_new = X3_pca X4_new = X4_pca X5_new = X5_pca X6_new = X6_pca X7_new = X7_pca X8_new = X8_pca X9_new = X9_pca X10_new = X10_pca X11_new = X11_pca X12_new = X12_pca X13_new = X13_pca X14_new = X14_pca X15_new = X15_pca,如何让这15个变量做支持向量机预测

您可以使用scikit-learn库中的SVM模型来对这15个变量进行预测,以下是示例代码: ``` python from sklearn import svm from sklearn.model_selection import train_test_split # 将15个变量组合成一个特征矩阵X X = np.hstack((X1_new, X2_new, X3_new, X4_new, X5_new, X6_new, X7_new, X8_new, X9_new, X10_new, X11_new, X12_new, X13_new, X14_new, X15_new)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 训练SVM模型 clf = svm.SVC() clf.fit(X_train, y_train) # 预测测试集结果 y_pred = clf.predict(X_test) ``` 在上面的示例代码中,我们首先将15个变量组合成一个特征矩阵X。然后,我们使用`train_test_split`函数将数据集划分为训练集和测试集。接着,我们使用`SVC`函数创建了一个SVM模型,并使用`fit`方法对模型进行训练。最后,我们使用`predict`方法对测试集进行预测,并将结果保存在`y_pred`变量中。

X1_new = X1_pca X2_new = X2_pca X3_new = X3_pca X4_new = X4_pca X5_new = X5_pca X6_new = X6_pca X7_new = X7_pca X8_new = X8_pca X9_new = X9_pca X10_new = X10_pca X11_new = X11_pca X12_new = X12_pca X13_new = X13_pca X14_new = X14_pca X15_new = X15_pca如何将他们放在一起

可以使用Pandas库将这些新变量放在一起,生成一个DataFrame对象。以下是一个示例代码: ```python import pandas as pd import numpy as np # 假设有15个新变量,将它们保存到一个Numpy数组中 X_new = np.random.rand(100, 15) # 生成随机数据 # 将15个新变量保存到一个DataFrame对象中 df_new = pd.DataFrame({'X1_new': X_new[:, 0], 'X2_new': X_new[:, 1], 'X3_new': X_new[:, 2], 'X4_new': X_new[:, 3], 'X5_new': X_new[:, 4], 'X6_new': X_new[:, 5], 'X7_new': X_new[:, 6], 'X8_new': X_new[:, 7], 'X9_new': X_new[:, 8], 'X10_new': X_new[:, 9], 'X11_new': X_new[:, 10], 'X12_new': X_new[:, 11], 'X13_new': X_new[:, 12], 'X14_new': X_new[:, 13], 'X15_new': X_new[:, 14]}) # 查看新的DataFrame对象 print(df_new.head()) ``` 上述代码中,我们首先生成了15个新变量的随机数据,并将它们保存到一个Numpy数组中。然后,使用`pd.DataFrame()`函数将这些新变量放在一起,生成一个DataFrame对象`df_new`。在`pd.DataFrame()`函数中,我们使用字典的方式将15个新变量命名,并将它们对应的数据分别取出来,放在一起组成一个新的DataFrame对象。 需要注意的是,在使用多元线性回归模型时,自变量需要进行标准化或归一化处理,以确保所有自变量的取值范围相同。可以使用scikit-learn库中的`StandardScaler`或`MinMaxScaler`进行标准化或归一化处理。

相关推荐

import numpy as np import pylab as pl import pandas as pd from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] for i in X2: if X2.index(i)<=2927: #两个单元楼的分隔数 x2.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] for i in X3: if X3.index(i)<=2927: x3.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] for i in X4: if X4.index(i)<=2927: x4.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] for i in X5: if X5.index(i)<=2927: x5.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] for i in X6: if X6.index(i)<=2927: x6.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] for i in X7: if X7.index(i)<=2927: x7.append(i) np.random.seed(42) q=np.array(X2[:2922]) w=np.array(x3[:2922]) e=np.array(x4[:2922]) r=np.array(x5[:2922]) t=np.array(x6[:2922]) p=np.array(x7[:2922]) eps=np.random.normal(0,0.05,152) X=np.c_[q,w,e,r,t,p] beta=[0.1,0.15,0.2,0.5,0.33,0.45] y=np.dot(X,beta)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) alpha = 0.1 # 设置岭回归的惩罚参数 ridge = Ridge(alpha=alpha) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) coef = ridge.coef_ # 计算岭回归的系数 intercept = ridge.intercept_ # 计算岭回归的截距 print('Coefficients:', coef) print('Intercept:', intercept)修改这个代码,要求增加时间序列x1参与建模

import numpy as np import pylab as pl import pandas as pd from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] X1=[i for i in range(1,24) for j in range(128)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] x21=[] for i in X2: if X2.index(i)<=2927: #两个单元楼的分隔数 x2.append(i) else: x21.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] x31=[] for i in X3: if X3.index(i)<=2927: x3.append(i) else: x31.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] x41=[] for i in X4: if X4.index(i)<=2927: x4.append(i) else: x41.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] x51=[] for i in X5: if X5.index(i)<=2927: x5.append(i) else: x51.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] x61=[] for i in X6: if X6.index(i)<=2927: x6.append(i) else: x61.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] x71=[] for i in X7: if X7.index(i)<=2927: x7.append(i) else: x71.append(i) np.random.seed(42) q=np.array(X1[:2922]) w=np.array(x21[:2922]) e=np.array(x31[:2922]) r=np.array(x41[:2922]) t=np.array(x51[:2922]) p=np.array(x61[:2922]) u=np.array(x71[:2922]) eps=np.random.normal(0,0.05,152) X=np.c_[q,w,e,r,t,p,u] beta=[0.1,0.15,0.2,0.5,0.33,0.45,0.6] y=np.dot(X,beta)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) alpha = 0.1 # 设置岭回归的惩罚参数 ridge = Ridge(alpha=alpha) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) coef = ridge.coef_ # 计算岭回归的系数 intercept = ridge.intercept_ # 计算岭回归的截距 print('Coefficients:', coef) print('Intercept:', intercept)

最新推荐

recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

基于java的聊天系统的设计于实现.zip

基于java的聊天系统的设计于实现
recommend-type

Vue数字孪生可视化建模系统源码.zip

vueVue数字孪生可视化建模系统源码.zip vueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依