请解释以下代码 class MeanShift(nn.Conv2d): def __init__( self, rgb_range, rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0), sign=-1): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = torch.Tensor(rgb_std) self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1) self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std for p in self.parameters(): p.requires_grad = False

时间: 2023-03-08 22:17:20 浏览: 91
这段代码的功能是实现 MeanShift 算法,它是一种非参数估计技术,用于估计均值和标准差,并应用于图像处理等领域中。它使用一个3x3的卷积核,根据输入的rgb_mean和rgb_std,计算出权重和偏置,最终将像素调整到0附近,实现均值归一化。
相关问题

class Residual(nn.Module): def __init__(self,in_c,out_c): super(Residual,self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(out_c), nn.ReLU(), nn.Conv2d(in_channels = out_c,out_channels = out_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(out_c), nn.ReLU(), ) self.botneck = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2) def forward(self,x): x_prim = x x = self.conv(x) x = self.botneck(x_prim) + x x = self.pool(x) return x 用tensorflow定义

以下是使用tensorflow定义的Residual类: ``` import tensorflow as tf from tensorflow.keras import layers class Residual(layers.Layer): def __init__(self, in_c, out_c): super(Residual, self).__init__() self.conv = tf.keras.Sequential([ layers.Conv2D(out_c, kernel_size=3, padding='same'), layers.BatchNormalization(), layers.ReLU(), layers.Conv2D(out_c, kernel_size=3, padding='same'), layers.BatchNormalization(), layers.ReLU() ]) self.botneck = layers.Conv2D(out_c, kernel_size=1) self.pool = layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)) def call(self, x): x_prim = x x = self.conv(x) x = self.botneck(x_prim) + x x = self.pool(x) return x ``` 在这个tensorflow版本的Residual类中,我使用了tensorflow的layers.Layer模块,并且对应用到了tensorflow中的层。使用layers.Conv2D()代替了nn.Conv2d(),使用layers.BatchNormalization()代替了nn.BatchNorm2d(),使用layers.ReLU()代替了nn.ReLU()。同时,我使用了layers.MaxPooling2D()代替了nn.MaxPool2d()。最后,在call()方法中,我使用了tensorflow的加法操作tf.add()代替了+。

class conv_block(nn.Module): def __init__(self, ch_in, ch_out): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True), nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class SqueezeAttentionBlock(nn.Module): def __init__(self, ch_in, ch_out): super(SqueezeAttentionBlock, self).__init__() self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) self.conv = conv_block(ch_in, ch_out) self.conv_atten = conv_block(ch_in, ch_out) self.upsample = nn.Upsample(scale_factor=2) def forward(self, x): # print(x.shape) x_res = self.conv(x) # print(x_res.shape) y = self.avg_pool(x) # print(y.shape) y = self.conv_atten(y) # print(y.shape) y = self.upsample(y) # print(y.shape, x_res.shape) return (y * x_res) + y为这段代码添加中文注释

# 定义卷积块模块 class conv_block(nn.Module): def __init__(self, ch_in, ch_out): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), # 3x3卷积层,输入通道数为ch_in,输出通道数为ch_out nn.BatchNorm2d(ch_out), # 批归一化层,对输出特征图进行归一化处理 nn.ReLU(inplace=True), # ReLU激活函数,将负数部分裁剪为0 nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True), # 再次进行3x3卷积操作 nn.BatchNorm2d(ch_out), # 批归一化层 nn.ReLU(inplace=True) # ReLU激活函数 ) def forward(self, x): x = self.conv(x) # 前向传播,进行卷积操作 return x # 定义SqueezeAttentionBlock模块,用于对特征图进行注意力加权 class SqueezeAttentionBlock(nn.Module): def __init__(self, ch_in, ch_out): super(SqueezeAttentionBlock, self).__init__() self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) # 平均池化层,用于对特征图进行降采样 self.conv = conv_block(ch_in, ch_out) # 卷积块,用于对降采样后的特征图进行卷积操作 self.conv_atten = conv_block(ch_in, ch_out) # 卷积块,用于学习注意力权重 self.upsample = nn.Upsample(scale_factor=2) # 上采样层,用于将池化后的特征图恢复到原始尺寸 def forward(self, x): x_res = self.conv(x) # 对原始特征图进行卷积操作 y = self.avg_pool(x) # 对特征图进行降采样 y = self.conv_atten(y) # 对降采样后的特征图进行卷积操作,得到注意力权重 y = self.upsample(y) # 将池化后的特征图恢复到原始尺寸 return (y * x_res) + y # 将注意力权重应用到原始特征图上,得到加权后的特征图

相关推荐

最新推荐

recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

主要介绍了Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

基于java的聊天系统的设计于实现.zip

基于java的聊天系统的设计于实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依