python读取无权重邻接矩阵txt文件从1开始编号计算每个节点的偏心度并输出
时间: 2024-02-05 19:04:18 浏览: 97
偏心度(eccentricity)是指一个节点到图中所有其他节点的最短路径中的最大值。
假设我们有一个无权重邻接矩阵保存在名为`matrix.txt`的文本文件中,每行表示一个节点的邻居节点,以空格分隔。我们先读取这个文件并构建邻接矩阵。
```python
import numpy as np
# 读取邻接矩阵
with open('matrix.txt', 'r') as f:
lines = f.readlines()
n = len(lines)
matrix = np.zeros((n, n), dtype=int)
for i, line in enumerate(lines):
neighbors = list(map(int, line.strip().split()))
for j in neighbors:
matrix[i, j-1] = 1
matrix[j-1, i] = 1 # 无向图需要对称
```
接下来,我们可以使用BFS算法计算每个节点的偏心度。
```python
def bfs(matrix, start):
"""从start节点开始进行BFS"""
n = matrix.shape[0]
visited = np.zeros(n, dtype=bool)
distance = np.zeros(n, dtype=int)
queue = [start]
visited[start] = True
while len(queue) > 0:
node = queue.pop(0)
for nei in range(n):
if matrix[node, nei] == 1 and not visited[nei]:
visited[nei] = True
distance[nei] = distance[node] + 1
queue.append(nei)
return distance
# 计算每个节点的偏心度
eccentricities = []
for i in range(n):
distances = bfs(matrix, i)
eccentricities.append(max(distances))
# 输出节点偏心度
for i, e in enumerate(eccentricities):
print(f"节点{i+1}的偏心度为{e}")
```
完整代码如下:
```python
import numpy as np
# 读取邻接矩阵
with open('matrix.txt', 'r') as f:
lines = f.readlines()
n = len(lines)
matrix = np.zeros((n, n), dtype=int)
for i, line in enumerate(lines):
neighbors = list(map(int, line.strip().split()))
for j in neighbors:
matrix[i, j-1] = 1
matrix[j-1, i] = 1 # 无向图需要对称
def bfs(matrix, start):
"""从start节点开始进行BFS"""
n = matrix.shape[0]
visited = np.zeros(n, dtype=bool)
distance = np.zeros(n, dtype=int)
queue = [start]
visited[start] = True
while len(queue) > 0:
node = queue.pop(0)
for nei in range(n):
if matrix[node, nei] == 1 and not visited[nei]:
visited[nei] = True
distance[nei] = distance[node] + 1
queue.append(nei)
return distance
# 计算每个节点的偏心度
eccentricities = []
for i in range(n):
distances = bfs(matrix, i)
eccentricities.append(max(distances))
# 输出节点偏心度
for i, e in enumerate(eccentricities):
print(f"节点{i+1}的偏心度为{e}")
```
阅读全文